
Computer Networks 183 (2020) 107577

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Offspeeding: Optimal energy-efficient flight speed scheduling for
UAV-assisted edge computing✩

Weidu Ye, Junzhou Luo ∗, Feng Shan, Wenjia Wu, Ming Yang
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

A R T I C L E I N F O

Keywords:
UAV
Edge computing
Data collection
Energy consumption
Flight speed scheduling
Optimal algorithm

A B S T R A C T

Millions of Internet of Thing (IoT) devices have been widely deployed to support applications such as smart
city, industrial Internet, and smart transportation. These IoT devices periodically upload their collected data
and reconfigure themselves to adapt to the dynamic environment. Both operations are resource consuming
for low-end IoT devices. An edge computing enabled unmanned aerial vehicle (UAV) is proposed to fly
over to collect data and complete reconfiguration computing tasks from IoT devices. Distinct from most
existing work, this paper focuses on flight speed scheduling that allocates proper flight speed to minimize
the energy consumption of the UAV with a practical energy model, under the constraints of individual task
execution deadlines and communication ranges. We formulate the Energy-Efficient flight Speed Scheduling
(EESS) problem, and devise a novel diagram to visualize and analyze this problem. An optimal energy-efficient
flight speed scheduling (Offspeeding) algorithm is then proposed to solve the offline version of the EESS
problem. Utilizing Offspeeding and the optimal properties obtained from the theoretical analysis, an online
heuristic speed scheduling algorithm is developed for more realistic scenarios, where information from IoT
devices keeps unknown until the UAV flies close. Finally, simulation results demonstrate our online heuristic is
near optimal. This research sheds light on a new research direction, e.g., deadline driven UAV speed scheduling
for edge computing with a practical propulsion energy model.
1. Introduction

Millions of Internet of Thing (IoT) devices have been widely de-
ployed to support applications such as smart city, industrial Internet,
and smart transportation. The main task for an IoT device is to collect
data and upload these data for centralized analysis, and the other
important task is to reconfigure themselves to adapt to the dynamic
environment, periodically. However, both operations consume energy.
First, long distance wireless data transmission is quite energy con-
suming; second, reconfiguration involves intensive computing on the
newly collected data. Reconfiguration ensures an IoT device to use a
matching configuration for the dynamic environment, so it is important
to save energy. However, IoT devices are resource limited, usually
lack on-board energy and computing power. Therefore, it is critical to
avoid long distance wireless data transmission and on-board intensive
computing for reconfiguration.

UAV-assisted edge computing is a promising technology, in which a
computational edge node is mounted on a UAV, which is dispatched

✩ This work was partially supported by the National Key R&D Program of China (Nos. 2017YFB1003000 and 2018YFB0803400); the National Natural Science
Foundation of China (Nos. 61632008, 61532013, 61702097, 62072102 and 62072103); Jiangsu Provincial Key Laboratory of Network and Information Security
(No. BM2003201); the Key Laboratory of Computer Network and Information Integration of the Ministry of Education of China (No. 93K-9).
∗ Corresponding author.

to fly close to each IoT device to perform data collection and re-
configuration computing. As a result, an IoT device waits until the
UAV approaches nearby itself and transmits the collected data, so the
transmission distance is short. At the same time, intensive computing
for reconfiguration no longer performs on the IoT device. Instead, the
mounted edge node conducts the computing as soon as it receives all
the data, and returns the result to the IoT device before the UAV flies
away. In such a way, it reduces the burden of IoT device in respect of
energy consumption. Compared to methods based on traditional ground
base stations and ground mobile sinks, UAV-assisted edge computing is
more flexible due to its high mobility and computing capability, and
hence plays an important role in smart city, industrial internet and
smart transportation.

Instead of deploying IoT devices in an area, we focus on placing
them along a line, which also has lots of applications, such as roads,
water/oil/gas pipes or river coast. An illustration of an application
scenario for this system is given in Fig. 1. In this scenario, a set of
vailable online 5 October 2020
389-1286/© 2020 Elsevier B.V. All rights reserved.

E-mail address: jluo@seu.edu.cn (J. Luo).

https://doi.org/10.1016/j.comnet.2020.107577
Received 4 July 2020; Received in revised form 27 August 2020; Accepted 23 Sept
ember 2020

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:jluo@seu.edu.cn
https://doi.org/10.1016/j.comnet.2020.107577
https://doi.org/10.1016/j.comnet.2020.107577
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107577&domain=pdf

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 1. An illustration of one application scenario. IoT cameras are deployed along
a highway to collect traffic data. These IoT cameras are assumed to be capable of
self reconfiguration to adapt to the dynamic traffic. However, a good reconfiguration
involves intensive computing on recent data and is deadline driven. An edge-computing
enabled UAV flies over and collects data from cameras at close positions. Reconfigu-
ration results are returned to these cameras from this UAV. How to control the flight
speed to minimize the energy consumption of UAV such that every IoT device has
enough time to upload data and each reconfiguration task is completed by its deadline.

IoT surveillance cameras are deployed along a given highway/road
to monitor traffic and collect interested data, such as the number of
vehicles, types of vehicles, and speeds of them, which can later be used
for smart transportation purposes, e.g., road usage and maintenance,
and driver behavior analysis. These IoT cameras are capable of self
reconfiguration for different traffic situations by changing their sensing
interval and sensing quality settings. However, a good reconfiguration
depends highly on the most recent data to adapt to the dynamic traffic,
i.e., an intensive computing on the recently collected data leads to
a good reconfiguration. Therefore, all the reconfiguration computing
tasks from IoT devicesare deadline driven. Assume the highway/road is
at a remote location where communication infrastructures are lacking,
this work uses an edge-computing enabled UAV to collect data from
the cameras at close positions and then perform the reconfiguration
computing. In this way, energy is saved for the battery powered IoT
cameras.

UAV-assisted edge computing is a current research trend in
academia [1–17], focusing on offloading computing tasks from IoT
devices. Energy is critical for UAVs because of obvious reasons. How-
ever, when considering UAV’s energy consumption, related works in
the literature either ignore propulsion energy [9,10,13,14] or assume a
simple flight energy model [1–3,8,15,16]. According to Zeng et al. [18],
the propulsion energy may occupy up to 95% total energy consumption
of a UAV, a fine-grained propulsion energy model is important to re-
duced energy consumption of it. Researches have demonstrated that the
propulsion power of UAV is mainly affected by its flight speed [5,18–
20], hence it is feasible to reduce UAV’s propulsion energy consumption
via controlling its flight speed. However, simple propulsion energy
model is assumed in related works. For example, some related works [2,
8] assume the flight power is proportional to the flight speed, and some
other related works [3,4] assume the flight power is proportional to the
square of flight speed, both are too simple. We adopt a sophisticated
UAV flight energy consumption model [19], in which a UAV has a most
energy-efficient flight speed, any lower or higher speed consumes more
energy.

In UAV-assisted edge computing, execution deadlines for offloaded
tasks are important. However, some related works [4,19,21–23] do
not take execution time of task into consideration, some other related
works [2,5,9,23] assume simple task execution deadlines, e.g., ev-
ery task shares the same execution deadline. Although the common
deadline assumption can ease the theoretical analysis and simplify
the problem solving procedure, however, the single deadline model
does not explicitly consider execution delay of individual offloaded
task, which is critical for IoT devices. We allow individual computing
deadlines for each offloaded task and minimize the propulsion energy
2

of UAV by adjusting its flight speed, while considering communication
range constraints.

Overall, this paper adopts the most practical flight energy model
and allows individual deadline for each offloaded task execution, mak-
ing our EESS problem quite a challenge to be solved optimally. The
readers can sense such fundamental nature from the following chal-
lenges to our problem. (1) According to our practical propulsion energy
consumption model, a UAV has a most energy-efficient flight speed, any
lower or higher speed consumes more power. It is challenging to choose
a speed in case such most energy-efficient flight speed is not feasible
subject to other constraints. (2) On the one hand, every IoT device must
have enough UAV time in its communication range to upload all data,
so the UAV should fly slow; on the other hand, each reconfiguration
task must be completed by its deadline, so the UAV should fly fast.
The best trade-off must be found. (3) The communication ranges of
IoT devices may overlap each other and the UAV collects data from
one device at a time. As a result, every IoT device competes for UAV
time to deliver its own data. Moreover, each device has a different
amount of data to transmit and a different communication range size,
such competition is rather complicated.

The main contributions of this paper are listed as follows:

• A UAV-assisted edge computing system is proposed to collect data
and complete offloaded reconfiguration computation from IoT
devices. We adopt a sophisticated UAV flight energy consumption
model [19], in which a UAV has a most energy-efficient flight
speed, any lower or higher speed consumes more power.

• We make the first attempt to minimize propulsion energy of UAV
by adjusting its flight speed while considering both communi-
cation range constraints and individual computing deadlines for
each offloaded task. We then formulate the energy efficient flight
speed scheduling (EESS) problem.

• A novel diagram is devised to visualize the EESS problem in
a simple and appealing way. Using the visualization diagram,
an optimal energy-efficient flight speed scheduling (Offspeeding)
algorithm is proposed, which is theoretically proved to optimally
solve the offline EESS problem.

• Based on optimality properties obtained from the theoretical
analysis for Offspeeding, a heuristic online algorithm is developed
for more realistic scenarios, where information of an IoT device
keeps unknown until the UAV flies close. Simulation results also
show that our online heuristic is near optimal. This research sheds
light on a new research direction, deadline driven UAV speed
scheduling for edge computing with a practical propulsion energy
model.

The rest of the paper is organized as follows. Section 2 introduces
works about UAV-assisted edge computing system and energy saving
strategies of UAV. Section 3 proposes the system model and formulates
the EESS problem. A novel graphical virtualization method and some
optimality properties are introduced in Section 4. Sections 5 and 6
solve the offline version of EESS problem. Section 7 solves the online
EESS problem. Finally, simulation results are given in Section 8, and
conclusions are drawn in Section 9.

2. Related works

In this section, we introduce recent works about UAV-assisted edge
computing and UAV’s energy saving strategies.

2.1. UAV-assisted edge computing

UAV-assisted edge computing is a promising technology to offload
the burden from IoT devices. Yong et al. [18] investigated several
works about UAV-assisted wireless network, and believed that UAV
mounted edge node is a feasible method to offload IoT devices’ task,
especially for real-time computing task. Jeong et al. [6] considered

Computer Networks 183 (2020) 107577W. Ye et al.

t
𝑇

UAV as a mobile cloudlet to assist ground IoT devices completing
their computing tasks. They proposed an optimization model that
jointly combined UAV’s trajectory and offloading strategy together
to minimize the energy consumption of UAV and ground users. Hu
et al. [7] set the edge-computing enabled UAV to compute the task
offloaded from ground users. Different from previous works [6], Hu
et al. [7] assumed all tasks uploaded by users were time sensitive, and
each task had its own deadline. Cao et al. [8] developed a cellular-
connected UAV mobile edge computing systems where the UAV was
served by terrestrial base station (TBS) for computation offloading.
A resource partitioning strategy was proposed to minimize the UAV
energy consumption by jointly optimizing resource partitioning, UAV
trajectory and bit allocation. Hu et al. [9] equipped the computation
server on UAV to help user equipment (UE) complete their task. A
joint optimization problem was formulated to minimize total energy
consumption of UAV and UEs under the bandwidth constraints. Zhou
et al. [24] also applied the UAV-enabled MEC power system in IoT and
WPT (wireless power transfer) technology was used in their work to
provide continuous power for UAV to maximize the communication
rate.

Above works discuss the UAV-assisted edge computing system in
the single-UAV scenario, and there are also a few works focusing on
UAV-assisted edge computing system in multi-UAV scenario. Zhang
et al. [10] deployed a large swarm of UAVs to enlarge coverage area of
IoT devices effectively. UAVs in this work were divided into two layers,
where the lower layer were rotor-crafts that flew in lower altitude
to serve ground users directly, and the higher layer were fixed-wing
UAVs that sent command to lower-layer UAVs. Wang et al. [25] also
established a multi-UAV enabled system where a number of UAVs were
deployed as flying edge clouds to serve a large scale of users. They
proposed a joint optimization problem that considered the number of
UAVs and their locations, and decided whether ground users had to
offload the task to UAVs.

However, most of these works focus on offloading overwhelming
collecting data by the IoT device, and seldom of them concentrating
on data reconfiguration of them.

2.2. Energy saving strategies of UAV

Energy saving is another important factor for UAV, for most UAVs
are motivated by batteries, and their working time is fundamentally
limited by its on-board energy. There are also some works focusing on
reducing the energy consumption of UAV. Franco et al. [26] proposed
a path planning strategy that covered all the points in a given area by
using UAVs. They presented an energy-aware path planning algorithm
that minimized consumption while satisfying coverage and resolution
constraints. Mazaffari et al. [27] deployed several UAVs in IoT network
to collect data from IoT devices. They enabled the uplink reliable
communication for IoT devices by minimizing the total transmit energy
consumption of UAV. Yong et al. [28] presented an energy consumption
model for rotary-wing UAV, including propulsion energy and com-
munication related energy. Based on the model, they minimized the
energy consumption of UAV by jointly optimizing UAV’s trajectory
and network throughput. Alzenad et al. [29] used UAV mounted base
station to serve the ground IoT devices in 3-D scenarios, which both
considered vertical and horizontal dimensions. They aimed to maximize
the number of covered IoT devices by minimizing the transmit power
of UAV. Trotta et al. [30] proposed a network architecture where UAVs
were dispatched to perform city-scale video monitoring for PoI (Point
of interest). To prolong the working time of UAV, they set charging
station on the top of bus, therefore the UAV could land on the bus to
charge their batteries.

Since propulsion power occupies most power consumption of UAV
and is mainly affected by its flight speed, there are also a few works
focusing on minimizing propulsion power by optimizing the flight
3

speed of UAV. Yong et al. [19] proposed an energy consumption model
for fixed-wings UAV, indicating that flight speed largely affects the
propulsion power of UAV. According to this model, they minimized the
energy consumption of UAV by finding out the proper flight speed in
each time slot. Eom et al. [21] investigated a wireless communication
system where the UAV completed tasks transmitted for multiple IoT
devices. They aimed to minimize the propulsion power under the
constraints of maximum battery storage of ground IoT devices. Xu
et al. [22] combined WPT technology to prolong the working time
of UAV, while minimizing the propulsion power of it at the same
time. They first considered the situation without maximum flight speed
constraint, and then added speed constraints into consideration.

However, these works mainly focus on saving UAV’s energy by opti-
mizing the air-to-ground communication channel between the UAV and
IoT devices, and do not take tasks’ computing time into consideration.
Besides, these works only achieve the heuristic or approximate solution,
but not the optimal result.

2.3. Energy efficient UAV-assisted edge computing

There are also a few related works concentrating on the energy
consumption of the UAV and IoT devices [1–5,9]. Yu et al. [1] pro-
posed a novel UAV-enabled edge computing system containing the UAV
and edge clouds (ECs) to collaboratively provide MEC serves to IoT
devices. They formulated an optimization problem to minimize UAV’s
energy consumption by considering UAV’s location and task allocation.
Zhang et al. [2] presented a novel optimization problem that aimed
to minimize the total energy consumption including communication
energy, computation energy and UAV’s flight energy. Zhang et al. [4]
proposed a UAV-assisted mobile edge computing system with stochastic
computing task model, which aimed to minimize the average weighted
energy consumption of sensors and the UAV. Li et al. [5] studied a UAV-
assisted mobile edge computing scenario to optimize the computation
offloading by minimizing the energy consumption of UAV. Hu et al. [9]
aimed to minimize the total energy consumption of the UAV and UEs
under the deadline and UAV’s trajectory constraints. Liu et al. [23]
investigated a UAV-enabled wireless MEC system where an energy
transmit server and a MEC server were mounted on UAV. This work
aimed to minimize the total required energy by jointly optimizing the
CPU frequencies, the offloading amount, transmit power and UAV’s
trajectory.

However, most of these works have the same deadline for each task,
which is not practical in realistic scenario. In this work, we define
individual deadline for each task, and attempt to find the minimum
energy consumption of UAV.

Overall, most UAV-assisted edge computing systems lack a fine-
grained propulsion energy consumption model. Few works focusing
on reducing propulsion energy neither take tasks’ computing time into
consideration or achieve the optimal result. On this basis, we propose
an optimal energy-efficient flight speed scheduling algorithm to solve
the problem discussed above.

3. System model and problem formulation

3.1. Network model

We consider 𝑚 IoT devices are deployed along a line to monitor
the environment, denoted as 𝑀 = {𝑆𝑛1, 𝑆𝑛2,⋯ , 𝑆𝑛𝑚}, which has lots
of applications, such as roads, water/oil/gas pipes or river coast. A
UAV flies at a fixed altitude 𝐻 , and an edge node is mounted on
it to collect data and complete the offloaded task from IoT devices.
This UAV departs periodically to serve every IoT device, namely a
tour. For each UAV tour, the IoT device 𝑆𝑛𝑖 has a reconfiguration task
𝑈𝑖 = (𝐶𝑖, 𝐷𝑖, 𝑇𝑖), where 𝐶𝑖 describes the total number of CPU cycles
o complete this task; 𝐷𝑖 denotes the size of data to be collected; and
𝑖 is the deadline for completing this task, 𝑖 = 1, 2,… , 𝑚. The UAV
has to return the reconfiguration results back to users before users are

Computer Networks 183 (2020) 107577W. Ye et al.

n
s

𝑡

p

b
a
W
i
c
o

t
e
d
d
t

i
a
(

∫

w
m
d
f
a
r
t
(

𝑏

T

∫

∫

∑

f

uploaded in different solutions. The UAV returns to the airport once it
serves all the reconfiguration tasks from IoT devices. During the data
collection process, the UAV can collect data from IoT devices when it
is flying, but is only allowed to receive data from a single IoT device at
each time. While during the task computing process, the UAV is capable
of simultaneously executing multiple reconfiguration tasks.

The receiving rate between the UAV and IoT devices is assumed to
be 𝑅, and CPU frequency of UAV is denoted as 𝑓𝑈𝐴𝑉 , both are fixed
umbers known in advance. On this basis, the receiving time of task 𝑖
hould be:

∗
𝑖 = 𝐷𝑖

𝑅

where the computing time of task 𝑖 should be:

𝑡+𝑖 = 𝐶𝑖
𝑓𝑈𝐴𝑉

Since the collected data is large and the CPUs on the UAV are
owerful enough, we assume the receiving time 𝑡∗𝑖 is generally larger

than the computing time 𝑡+𝑗 , i.e., 𝑡∗𝑖 ≥ 𝑡+𝑗 ,∀𝑖, 𝑗. Let reconfiguration
task deadline be 𝑇𝑖, by which, the UAV should finish data collection
and complete reconfiguration task and return the results. We ignore
the delay and energy consumption caused by sending reconfiguration
settings back to IoT devices, for the data size of reconfiguration results
is much smaller compared to the collected raw data.

3.2. Energy consumption model

The energy consumption of a UAV contains three parts: communica-
tion energy, computing energy and propulsion energy. Since propulsion
energy is much larger than that of computing and communication
energy, we only consider the propulsion energy consumption of UAV
in this paper.

For a fixed-wing UAV in straight flight with constrained speed, the
propulsion energy consumption is expressed in a closed form [19],
shown in Eq. (1):

𝑝 = 𝑐1 ∗ 𝑣3 + 𝑐2
𝑣 , (1)

where 𝑝 represents the propulsion power of UAV, 𝑐1 and 𝑐2 are related
to the aircraft’s weight, wing area, air density, and so on. Therefore,
propulsion power of UAV is related to speed 𝑣.

The UAV has the optimal flight speed to cost the least energy
consumption. On the one hand, it will cost much energy consumption
when the flight speed is small enough (the second part of Eq. (1) will be
too large). On the other hand, when the flight speed is large enough,
it also costs much energy (the first part of Eq. (1) will be too large).
Overall, there should be a proper flight speed that the UAV costs the
least energy consumption, any higher or lower speed will cost more.

Based on Eq. (1), the optimal speed of UAV to achieve the minimum
propulsion energy can be calculated in Appendix F.

3.3. Problem formulation

We assume that communication ranges of IoT devices are over-
lapped with each other, such scenario is illustrated in Fig. 2. Note that
the non-overlapped scenario can be divided into several overlapped
scenarios. We assume the UAV flies along this line to collect data and
completes offloaded reconfiguration tasks from 𝑚 IoT devices within
their own deadline 𝑇𝑖. The UAV cannot fly at too-fast speed, for it has to
finish all the tasks within communication ranges of IoT devices. On the
other hand, the UAV cannot fly at too-low speed, for it has to complete
the task of each IoT device before the deadline 𝑇𝑖. With the constraints
above, we aim to minimize the energy consumption of UAV.
4

Specifically, we define the UAV’s flight speed at position 𝑑 as 𝑣(𝑑),
where 𝑑 is a position in UAV’s flight path. Then, the flight time spent
for the UAV from 𝑑 = 0 to reach 𝑑 = 𝑥 can be calculated by

𝑡 = ∫ 𝑥
0

d𝑑
𝑣(𝑑) . (2)

IoT device 𝑆𝑛𝑖 is assumed to have a communication range, starting
from 𝑏𝑖 and terminating at 𝑑𝑖. 𝑆𝑛𝑖 is only allowed to upload its collected
data when UAV flies within such range, and the reconfiguration compu-
tation results must be returned when the UAV is still inside such range.
We assume the communication ranges have different ranges sizes but
aligned. In other words, 𝑑𝑖−𝑏𝑖 may vary from IoT device to IoT device,
ut a range starts left must terminate left and there is no range inside
nother range. So we have 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑚 and 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑚.
ithout loss of generality, let 𝑏1 = 0 and 𝑑𝑚 = 𝐷. Such an assumption

s reasonable because the same type of IoT devices usually have similar
ommunication ranges and they are placed in a distance from each
ther to monitor different areas.

As a result, the UAV visits and serves IoT devices in the order of
heir indexes. We therefore assume a reasonable and tight deadline for
ach reconfiguration task, e.g., 𝑇𝑖 = 𝑡+𝑖 +

∑𝑖
𝑗=1 𝑡

∗
𝑗 . Since the UAV collects

ata from one IoT device at a time, a total collection time of ∑𝑖−1
𝑗=1 𝑡

∗
𝑗

ata must have be spent prior to start task 𝑖. To finish task 𝑖, 𝑡+𝑖 + 𝑡∗𝑖
ime is needed, so 𝑡+𝑖 +

∑𝑖
𝑗=1 𝑡

∗
𝑗 is the minimum time to complete task 𝑖.

Since for every 𝑆𝑛𝑖, 𝑖 = 1, 2,… , 𝑚, the UAV has to collect data from
t, complete the reconfiguration task and return the result to it, hence,
t least 𝑡∗𝑖 + 𝑡+𝑖 UAV time must be spent within communication range
𝑏𝑖, 𝑑𝑖). The constraint is written as
𝑑𝑖
𝑏𝑖

d𝑑
𝑣(𝑑) ≥ 𝑡∗𝑖 + 𝑡+𝑖 .

However, since communication range of IoT devices are overlapped
ith each other, flying within the range of 𝑆𝑛𝑖 does not necessarily
ean the UAV serves (collects data and completes reconfiguration
ata) 𝑆𝑛𝑖. Assume 𝑑 = 𝛼𝑖 is the switching position where the UAV
inishes collecting data from 𝑆𝑛𝑖 and starts collecting from 𝑆𝑛𝑖+1,and
ssume 𝑑 = 𝛽𝑖 is the returning positions where the UAV returns the
econfiguration result to 𝑆𝑛𝑖. Let 𝛼0 = 0. The switching positions and
he returning position must be within the communication range of
𝑏𝑖, 𝑑𝑖), we therefore have the following range constraints.

𝑖 ≤ 𝛼𝑖−1 < 𝛼𝑖 < 𝛽𝑖 ≤ 𝑑𝑖,∀𝑖. (C1)

hen, we have the following completion constraints
𝛼𝑖
𝛼𝑖−1

d𝑑
𝑣(𝑑) ≥ 𝑡∗𝑖 .

𝛽𝑖
𝛼𝑖

d𝑑
𝑣(𝑑) ≥ 𝑡+𝑖 .

(C2)

Since the reconfiguration deadline for 𝑆𝑛𝑖 is defined 𝑇𝑖 = 𝑡+𝑖 +
𝑖
0 𝑡

∗
𝑗 , 𝑖 = 1, 2,… , 𝑚. Therefore, the UAV has to complete all tasks

rom IoT devices 𝑆𝑛1 to 𝑆𝑛𝑚 before their own deadlines, as the delay
constraint

∫ 𝛽𝑖
0

d𝑑
𝑣(𝑑) ≤ 𝑇𝑖. (C3)

According to the propulsion energy model Eq. (1), and since the
𝑣(𝑑) is the UAV speed at position 𝑑, then we have the flight power
𝑝(𝑑) at position 𝑑 as 𝑝(𝑑) = 𝑐1 × 𝑣(𝑑)3 + 𝑐2

𝑣(𝑑) ,∀𝑑 ∈ [0, 𝐷]. So the energy
consumption at position 𝑑 is 𝑒 = 𝑝𝑡 = 𝑝(𝑑) × d𝑑

𝑣(𝑑) . The total energy
consumption of the UAV can be integrated as

𝐸 = ∫ 𝐷
0 𝑝(𝑑) d𝑑

𝑣(𝑑) (3)

We now define EESS problem as follows.

Definition 1 (EESS Problem). Given 𝑚 IoT devices and a UAV-assisted
edge computing system described above, the energy efficient flight
speed scheduling (EESS) problem is to determine the flight speed 𝑣(𝑑)
for the UAV in each distance point 𝑑 to minimize the propulsion energy
consumption in Eq. (3) while satisfying the range constraint Eq. (C1),

the completion constraint Eq. (C2) and the delay constraint Eq. (C3).

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 2. An illustration of the EESS problem. For 𝑆𝑛𝑖, the UAV spends at least 𝑡∗𝑖 time collecting its data, and 𝑡+𝑖 time computing its task, which has a completion deadline 𝑇𝑖. We
assume the UAV collects from one device at a time (e.g., before point 𝛼1, the UAV receives task from 𝑆𝑛1, and after point 𝛼1, the UAV receives task from 𝑆𝑛2), but can compute for
multiple devices simultaneously, it can also collect and compute simultaneously (e.g. from 𝛼1 to 𝛽1, the UAV computes task from 𝑆𝑛1 and receives tasks from 𝑆𝑛2 simultaneously).
The UAV’s flight energy must be minimized to finish all tasks: on the one hand, if flies slow, the UAV has enough time to collect data however consumes more time and energy
according to our practical energy model; on the other hand, a faster-speed flight may satisfy delay constraints and reduce energy consumption but may cause insufficient time in
communication range, causing failure of completing tasks (e.g. UAV has to take 𝑡∗1 + 𝑡+1 time in 𝑆𝑛1 ’s communication range from 𝑏1 to 𝑑1). Meanwhile, IoT devices compete for
UAV time.
The EESS problem is expressed in mathematics model, shown in 𝑃1.

(𝑃 1) ∶min
𝑣(𝑑) ∫

𝐷

0
𝑝(𝑑) d𝑑

𝑣(𝑑)
(4)

s.t. (𝐶1)(𝐶2)(𝐶3) (5)

An illustration of the EESS problem is given in Fig. 2.
This problem is called offline problem if all information is known

before scheduling; it is called online problem if IoT device informa-
tion is not available unless the UAV flies close. The speed scheduling
function is an optimal solution of offline algorithm, and we call it the
optimal speed scheduling function, denoted as 𝑣𝑜𝑝𝑡(𝑑).

4. Graphical virtualization and optimality properties

In this section, we first introduce a novel graphical visualization
method to redefine the EESS problem, and then present some optimality
properties in preparing for the optimal solution.

4.1. Graphical virtualization for the EESS problem

We introduce the graphical virtualization method through a novel
distance-time diagram as in Fig. 3. In this diagram, the 𝑋-axis repre-
sents flight distance and 𝑌 -axis indicates the flight time, as a result, any
point (𝑑, 𝑡) stands for the UAV reaching position 𝑑 at time 𝑡. Therefore,
a curve on this diagram is the distance-time accumulation curve, for
example curve 𝐿(𝑑) in Fig. 3. It is clear that the slope of curve 𝐿(𝑑) at
𝑑 is the reciprocal of UAV’s flight speed 1

𝑣(𝑑) at position 𝑑. Hence, We

can determine the optimal speed schedule 𝑣𝑜𝑝𝑡(𝑑) by determining the
optimal accumulation curve 𝐿𝑜𝑝𝑡(𝑑).

However, a feasible accumulation curve does not go freely on
the diagram, it has constraints. According to the completion constraint
Eq. (C2), the UAV should not fly fast and the curve should not have
too small slope, so we have a lower bound for a feasible accumulation
curve, 𝐹 (𝑑). That is before leaving range of 𝑆𝑛𝑖, a total of 𝑇 +

𝑖 =
𝑡+𝑖 +

∑𝑖
𝑗=1 𝑡

∗
𝑗 time must have accumulated at position 𝑑 = 𝑑𝑖. According

to the delay constraint Eq. (C3), the UAV should not fly slow and the
curve should not have too large slope, so we have an upper bound for
5

Fig. 3. An illustration of the proposed graphical visualization method. In the distance-
time diagram, accumulation curve 𝐿(𝑑) specifies the time 𝑡 when reaching position 𝑑,
the slope of which is the reciprocal value of UAV’s flight speed. Due to the completion
constraint (delay constraint) the UAV should not fly fast (slow), so we have a lower
(upper) bound curve 𝐹 (𝑑) (𝑇 (𝑑)). A feasible accumulation curve must be within the
two bounds. We focus on finding the optimal accumulation curve.

a feasible accumulation curve, 𝑇 (𝑑). That is before entering range of
𝑆𝑛𝑖, a total of 𝑇 ∗

𝑖 =
∑𝑖−1

𝑗=1 𝑡
∗
𝑗 time must have accumulated at position

𝑑 = 𝑏𝑖, for otherwise the deadline can never be met. According to the
range constraint Eq. (C1), a feasible accumulation curve must be within
the two bounds. Our graphical virtualization method is inspired by the
data flow model in [31].

4.2. Optimality properties

Before we present the algorithm to optimally solve the EESS prob-
lem, we would like to first give some optimality properties.

Lemma 1 (Convexity). According to the propulsion energy model in
Eq. (1), the energy consumption power for UAV 𝑝 is a convex function of
UAV flight speed 𝑣.

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 4. Using a constant UAV flight speed can achieve a higher energy-efficiency than
using a varying flight speed. The optimal accumulation curve is straight between any
two points, as long as this is feasible.

Proof. See Appendix A.

Lemma 2 (Constant Speed Property). Using a constant UAV flight speed
can achieve a higher energy-efficiency than using a varying flight speed.

Proof. Assume the UAV speed changes. Without loss of generality,
let the corresponding accumulation curve be 𝐿(𝑑) in Fig. 4. Then, the
energy consumption of the UAV is described as:

𝐸𝐿(𝑑) = ∫ 𝐷
0 𝑝(𝑣(𝑑)) d𝑑

𝑣(𝑑) = ∫ 𝐷
0

𝑝(𝑣(𝑑))
𝑣(𝑑) d𝑑 (6)

If UAV flies at constant speed 𝐷
𝑇 , energy consumption of it is written

as:

𝐸𝐿
𝑜𝑝𝑡 = 𝑝(𝐷𝑇) ⋅ 𝑇 = 𝑝(∫ 𝐷

0 d𝑑

∫ 𝐷
0

d𝑑
𝑣(𝑑)

) ⋅ ∫ 𝐷
0

d𝑑
𝑣(𝑑) (7)

We consider the following version of Jensen’s inequation [31],

𝑝(∫
𝐷
0 𝑓 (𝑑)𝑔(𝑑) d𝑑

∫ 𝐷
0 𝑔(𝑑) d𝑑

) ≤ ∫ 𝐷
0 𝑝(𝑓 (𝑑))𝑔(𝑑) d𝑑

∫ 𝐷
0 𝑔(𝑑) d𝑑

(8)

Let 𝑓 (𝑑) = 𝑣(𝑑) and 𝑔(𝑑) = 1
𝑣(𝑑) , we get,

𝑝(
∫ 𝐷
0 𝑣(𝑑)⋅ d𝑑

𝑣(𝑑)

∫ 𝐷
0

d𝑑
𝑣(𝑑)

) ≤
∫ 𝐷
0 𝑝(𝑣(𝑑))⋅ d𝑑

𝑣(𝑑)

∫ 𝐷
0

d𝑑
𝑣(𝑑)

(9)

We multiply T (which is ∫ 𝐷
0

1
𝑣(𝑑) d𝑑) in inequation, and get:

𝑝(
∫ 𝐷
0 𝑣(𝑑)⋅ d𝑑

𝑣(𝑑)

∫ 𝐷
0

d𝑑
𝑣(𝑑)

) ⋅ ∫ 𝐷
0

d𝑑
𝑣(𝑑) ≤ ∫ 𝐷

0 𝑝(𝑣(𝑑)) ⋅ d𝑑
𝑣(𝑑) (10)

𝑝(∫ 𝐷
0 d𝑑

∫ 𝐷
0

d𝑑
𝑣(𝑑)

) ⋅ ∫ 𝐷
0

d𝑑
𝑣(𝑑) ≤ ∫ 𝐷

0 𝑝(𝑣(𝑑)) ⋅ d𝑑
𝑣(𝑑) (11)

𝑝(𝐷𝑇) ⋅ 𝑇 ≤ ∫ 𝐷
0 𝑝(𝑣(𝑑)) ⋅ d𝑑

𝑣(𝑑) (12)

Finally, we have

𝐸𝐿
𝑜𝑝𝑡 ≤ 𝐸𝐿(𝑑) (13)

There is a direct corollary that follows Lemma 2.

Corollary 1. On the distance-time diagram, the optimal accumulation
curve is straight between any two points, as long as this is feasible.
6

Fig. 5. The graphical visualization of the EESS-L problem, where the red sub-lines are
the optimal solution. Our algorithm works in iteration. The main steps are described
as follows: we connect the origin to every corner one by one, to test the slope of the
connected line, and then choose the line with the largest slope as the first sub-line.
The problem then repeats.

5. Optimal solution for special cases

Since the EESS problem is complicated to be solved directly, we start
with two simplified special cases. By solving these special cases, we
obtain some important properties for the general problem.

5.1. EESS problem sharing starting position

In the EESS problem given in Definition 1, when all the IoT de-
vices share a common starting position of their communication ranges,
i.e., 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑚 = 0, we call such a special case the EESS-L
problem. Note that, in the EESS-L problem, the communication range
terminating positions are different, i.e., 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑚.

The graphical visualization of EESS-L problem is shown in Fig. 5. In
which we can see the upper bound curve 𝑇 (𝑑) is a straight line, where
the lower bound curve 𝐹 (𝑑) stays the same as the general problem.
More specially, we have 𝐹 (𝑑𝑖) = 𝑡+𝑖 +

∑𝑖
𝑗=1 𝑡

∗
𝑗 and 𝑇 (𝑑) = 𝑡+𝑚 +

∑𝑚
𝑗=1 𝑡

∗
𝑗 .

According to Corollary 1, the optimal accumulation curve 𝐿𝑜𝑝𝑡 can be
divided into 𝑗 sub-lines, illustrating as 𝑙𝑖, 𝑖 = 1, 2,… , 𝑗 (see as red lines
in Fig. 5). Each sub-line 𝑙𝑖 starts from position 𝑞𝑖 with slope 𝑠𝑖, and
terminates at 𝑞𝑖+1, and let 𝑞1 = (0, 0).

Before we go directly to the algorithm, we would like to first present
some important properties about the optimal accumulation curve 𝐿𝐿

𝑜𝑝𝑡
of the EESS-L problem.

Lemma 3. An optimal accumulation curve 𝐿𝐿
𝑜𝑝𝑡 must only decrease its

slope.

Proof. See Appendix B.

Lemma 4. An optimal accumulation curve 𝐿𝐿
𝑜𝑝𝑡 only decreases its slope

at a lower bound curve corners, i.e., 𝐹 (𝑑𝑖), 𝑖 = 1, 2,… , 𝑚.

Proof. See Appendix C.

With the above two lemmas ready, we now introduce the high level
idea of our algorithm. It is clear that any optimal accumulation curve
𝐿𝐿
𝑜𝑝𝑡 consists of a set of sub-line 𝑙𝑖 such that 𝐿𝐿

𝑜𝑝𝑡 changes direction only
by decreasing slope and only at corners of 𝐹 (𝑑). Therefore, if we find
all the direction changing corners, the 𝐿𝐿

𝑜𝑝𝑡 curve can be determined.
We therefore focus on finding the very first direction changing corner,
e.g., determining the first sub-line. We connect the origin to every
corner one by one to test the slope of the connected line. We choose the

Computer Networks 183 (2020) 107577W. Ye et al.

O

a
t

a
i
U

T
p

P
A
i
o

p
a
e
𝐿

o
t
a
s
s
a
s
o

i
A
o
𝑙
a
l
𝑠

c

5

s
i
p
t

w
t
M
C
s
s
a

t
p

L
s

L
a

c
W
e
c

line with the largest slope as the first sub-line, and the corresponding
corner as the first direction changing corner. Starting from this corner,
the same problem repeats and we find the next sub-line and corners.

The detailed pseudo code is given in Algorithm 1.

Algorithm 1 Optimal algorithm for EESS-L
Input: Receiving time for each IoT device 𝑡∗𝑖

Computing time for each IoT device 𝑡+𝑖
Communication range of each IoT device 𝑖, from 0 to 𝑑𝑖
Number of users 𝑚, UAV’s initial state 𝑞1

utput: UAV’s flight speed 𝑣𝑗 in each iteration 𝑗
UAV’s flying state 𝑞𝑗 in each iteration 𝑗
UAV’s flying energy 𝐸𝑓𝑙𝑦

1: 𝑖 = 1, 𝑗 = 1, 𝑣 = ∅, 𝐸𝑓𝑙𝑦 = 0
2: while 𝑖 <= 𝑚 do
3: Find the maximum slope sub-line 𝑙𝑗 with slope 𝑠𝑗 from UAV’s

current state 𝑞𝑗 to every corner of curve 𝐹 (𝑑) after distance 𝑑𝑖
4: 𝑣𝑗 =

1
𝑠𝑗

5: Update 𝑞𝑗+1 as the terminal point of 𝑙𝑗 and update 𝑖 as the
corresponding IoT device.

6: 𝑗 = 𝑗 + 1
7: end while
8: Calculating 𝐸𝑓𝑙𝑦 according to 𝑣 and 𝑞
9: return 𝑣, 𝐸𝑓𝑙𝑦, 𝑞

This algorithm works in iteration. In each iteration, one sub-line
nd its corresponding direction changing corner is determined. Note
hat variable 𝑞𝑗 is defined as the origin flight state for UAV in iteration
𝑗. Algorithm 1 attempts to find the maximum-slope line 𝑙𝑗 with slope
𝑠𝑗 from the origin point 𝑞𝑗 to direction changing corner point of F(d)
(𝑑𝑖, 𝐹 (𝑑𝑖)). Then the optimal flight speed of UAV is 𝑣𝑗 =

1
𝑠𝑗

. Finally, the
lgorithm updates the origin state of UAV for next iteration 𝑞𝑗+1 and
ts corresponding IoT device 𝑖, and the algorithm terminates when the
AV serves all the IoT devices (𝑖 > 𝑚).

heorem 1. Algorithm 1 computes the optimal solution for the EESS-L
roblem in 𝑂(𝑚2) steps.

roof. We prove by contradiction. Supposed the solution produced by
lgorithm 1 is not optimal, and the optimal accumulation curve 𝐿𝐿

𝑜𝑝𝑡
s different from our computed one. We next show such 𝐿𝐿

𝑜𝑝𝑡 cannot be
ptimal.

An example is given in Fig. 6, in which, the accumulation curves
roduced by our algorithm is 𝑙1, 𝑙2, 𝑙3 ∈ 𝐿𝐿. Assuming the optimal
ccumulation curve 𝐿𝐿

𝑜𝑝𝑡 is different from 𝐿𝐿. There are two cases,
ither part of 𝐿𝐿

𝑜𝑝𝑡 curve is below 𝐿𝐿 curve, or part of 𝐿𝐿
𝑜𝑝𝑡 is above

𝐿.
Case 1. As shown in Fig. 6, instead of using sub-line 𝑙1 to connect the

rigin with the second corner as by the 𝐿𝐿 curve, the 𝐿𝐿
𝑜𝑝𝑡 curve uses

wo sub-lines 𝑙′1 and 𝑙′2 to connect the origin and the second corner,
nd these two sub-lines are below sub-line 𝑙1. Obviously, we have the
ub-line slopes inequation 𝑠′2 > 𝑠1 > 𝑠′1, where 𝑠′2, 𝑠1 and 𝑠′1 are the
lopes for sub-lines 𝑙′2, 𝑙1 and 𝑙′1 respectively. According to Lemma 2
nd Corollary 1, the energy consumption for solution by 𝐿𝐿 curve is
maller than that of 𝐿𝐿

𝑜𝑝𝑡, which contradicts the assumption that 𝐿𝐿
𝑜𝑝𝑡 is

ptimal.
Case 2. Assume part of 𝐿𝐿

𝑜𝑝𝑡 curve is above 𝐿𝐿 curve, as an example
s given in Fig. 6, and assume the slope of curve 𝑙𝑜𝑝𝑡3 satisfies 𝑠𝑜𝑝𝑡3 > 𝑠1.
s shown in Fig. 6, instead of using sub-line 𝑙1, 𝑙2 and 𝑙3 to connect the
rigin to final destination 𝐹 (𝑑𝑚). the 𝐿𝐿

𝑜𝑝𝑡 curve uses two sub-lines 𝑙′3 and
′
4 to connect the origin and the second corner, and these two sub-lines
re above sub-line 𝑙1, 𝑙2 and 𝑙3. Obviously, we can find another straight
ine 𝑙′5 between line 𝑙′3 and 𝑙′4. We have the sub-line slopes inequation
′ > 𝑠′ > 𝑠′ , where 𝑠′ , 𝑠′ and 𝑠′ are the slopes for sub-lines 𝑙′ , 𝑙′
7

3 5 4 3 5 4 3 5 l
Fig. 6. An illustration of Algorithm 1 results for the EESS-L problem, where the
accumulation curves produced by Algorithm 1 is 𝑙1 , 𝑙2 , 𝑙3 ∈ 𝐿′ (red solid lines). We
prove 𝐿′ to be optimal by contradiction. In case 1, instead of 𝑙1, 𝐿𝐿

𝑜𝑝𝑡 uses two sub-
lines 𝑙′1 , 𝑙

′
2 instead. Obviously, 𝑠′2 > 𝑠1 > 𝑠′1, indicating 𝐿𝐿

𝑜𝑝𝑡 is not optimal. In case 2,
𝐿𝐿

𝑜𝑝𝑡 uses 𝑙′3 , 𝑙
′
4 instead, where slope 𝑠′3 > 𝑙1. Then, line 𝑠′5 could be found between 𝑙′3

and 𝑙′4 where 𝑠′3 > 𝑠′5 > 𝑠′4, indicating 𝐿𝐿
𝑜𝑝𝑡 is not optimal. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of
this article.)

and 𝑙′4 respectively. According to Lemma 2 and Corollary 1, the energy
consumption for solution by 𝐿𝐿 curve is smaller than that of 𝐿𝐿

𝑜𝑝𝑡, which
contradicts the assumption that 𝐿𝐿

𝑜𝑝𝑡 is optimal.
Since both cases are impossible, so we must have 𝐿𝐿

𝑜𝑝𝑡 = 𝐿𝐿.
During each iteration, Algorithm 1 attempts to find the maximum

slope from the origin state 𝑞𝑗 to every direction changing corner of
𝐹 (𝑑). The maximum steps for Algorithm 1 is 𝑚∗(𝑚−1)

2 , whose time
omplexity is 𝑂(𝑚2).

.2. EESS problem sharing terminating position

In the EESS problem given in Definition 1, when all the IoT devices
hare a common terminal position of their communication ranges,
.e., 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑚 = 0, we call such a special case the EESS-U
roblem. Note that, in the EESS-U problem, the communication range
erminating positions are different, i.e., 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑚.

The graphical visualization of EESS-U problem is shown in Fig. 7. In
hich we can see the lower bound curve 𝐹 (𝑑) is a straight line, where

he upper bound curve 𝑇 (𝑑) stays the same as the general problem.
ore specially, we have 𝑇 (𝑑𝑖) =

∑𝑖
𝑗=1 𝑡

∗
𝑗 and 𝐹 (𝑑𝑖) = 𝑑𝑚. According to

orollary 1, the optimal accumulation curve 𝐿𝑜𝑝𝑡 can be divided into 𝑗
ub-lines, illustrating as 𝑙𝑖, 𝑖 = 1, 2,… , 𝑗 (see as red lines in Fig. 7). Each
ub-line 𝑙𝑖 starts from position 𝑞𝑖 with slope 𝑠𝑖, and terminates at 𝑞𝑖+1,
nd let 𝑞1 = (0, 0).

Similar to the previous defined EESS-L problem, we have two op-
imality properties about the optimal accumulation curve 𝐿𝑈

𝑜𝑝𝑡. Their
roofs are similar and omitted.

emma 5. An optimal accumulation curve 𝐿𝑈
𝑜𝑝𝑡 must only increase its

lope.

emma 6. An optimal accumulation curve 𝐿𝑈
𝑜𝑝𝑡 only increases its slope at

n upper bound curve corner, i.e., 𝑇 (𝑑𝑖), 𝑖 = 1, 2,… , 𝑚.

It is clear that 𝐿𝑈
𝑜𝑝𝑡 consists of a set of sub-line 𝑙𝑖 such that 𝐿𝑈

𝑜𝑝𝑡
hanges direction only by increasing slope and only at corners of 𝑇 (𝑑).
e therefore focus on finding the very first direction changing corner,
.g., determining the first sub-line. We connect the origin to every
orner one by one to test the slope of the connected line. We choose the

ine with the largest slope as the first sub-line, and the corresponding

Computer Networks 183 (2020) 107577W. Ye et al.

O

T
p

o

6

n
d
b
p
I

c
W

L
l
h

L
𝐿

P

o
m

t
t
t

o
i
t
c
t
l
T

O

1
1
1

1

Fig. 7. An illustration of Algorithm 2 results for the EESS-U problem, where the
accumulation curves produced by Algorithm 1 is 𝑙1 , 𝑙2 ∈ 𝐿′ (red solid lines). We prove
𝐿′ to be optimal by contradiction. In case 1, instead of 𝑙1, 𝐿𝐿

𝑜𝑝𝑡 uses two sub-lines 𝑙′1 , 𝑙
′
2

instead. Obviously, 𝑠′1 > 𝑠1 > 𝑠′2, indicating 𝐿𝐿
𝑜𝑝𝑡 is not optimal. In case 2, 𝐿𝐿

𝑜𝑝𝑡 uses 𝑙′3 , 𝑙
′
4

instead, where slope 𝑠′3 < 𝑙1. Then, line 𝑠′5 could be found between 𝑙′3 and 𝑙′4 where
𝑠′3 < 𝑠′5 < 𝑠′4, indicating 𝐿𝐿

𝑜𝑝𝑡 is not optimal.

corner as the first direction changing corner. Starting from this corner,
the same problem repeats and we find the next sub-line and corners.

The pseudo code is given in Algorithm 2.

Algorithm 2 Optimal algorithm for EESS-U
Input: Receiving time for each IoT device 𝑡∗𝑖

Computing time for each IoT device 𝑡+𝑖
Communication range of each IoT device 𝑖, from (𝑏𝑖,0) to (𝑑𝑖,0)
Number of IoT devices 𝑚, UAV’s initial state 𝑞1

utput: UAV’s flight speed 𝑣𝑗 in each iteration 𝑗
UAV’s flying energy 𝐸𝑓𝑙𝑦

1: 𝑖 = 1, 𝑗 = 1, 𝑣 = ∅, 𝐸𝑓𝑙𝑦 = 0
2: while 𝑖 <= 𝑚 do
3: Find the minimum slope sub-line 𝑙𝑗 with slope 𝑠𝑗 from UAV’s

current state 𝑞𝑗 to every corner of curve 𝑇 (𝑑) after distance 𝑏𝑖

4: 𝑣𝑗 =
1
𝑠𝑗

5: Update 𝑞𝑗+1 as the terminal point of 𝑙𝑗 and update 𝑖 as the
corresponding IoT device.

6: 𝑗 = 𝑗 + 1
7: end while
8: Calculating 𝐸𝑓𝑙𝑦 according to 𝑣 and 𝑞
9: return 𝑣, 𝐸𝑓𝑙𝑦, 𝑞

The correctness of Algorithm 2 is given in the following theorem.

heorem 2. Algorithm 2 computes the optimal solution for the EESS-U
roblem in 𝑂(𝑚2) steps.

The proof of Theorem 2 is similar to that of Theorem 1, and thus is
mitted for brevity.

. Offspeeding algorithm for the general case

We are now ready to solve the general EESS problem, which does
ot impose any extra restriction on the communication ranges of IoT
evices. The optimal accumulation curve changes its direction both
y increasing slope and by decreasing slope. However, the optimality
roperties obtained in the special cases, i.e., Lemmas 4 and 6 still hold.
8

n other words, 𝐿𝑜𝑝𝑡 decreases its slope only at a low bound curve a
orner, and it increases its slope only at an upper bound curve corner.
e therefore present the following lemma directly without proof.

emma 7 (Optimal Accumulation Curve Property). An optimal accumu-
ation curve 𝐿𝑜𝑝𝑡(𝑑) either intersects with 𝐹 (𝑑) or 𝑇 (𝑑), i.e., for some 𝑖, we
ave either 𝐿𝑜𝑝𝑡(𝑑𝑖) = 𝐹 (𝑑𝑖) or 𝐿𝑜𝑝𝑡(𝑏𝑖) = 𝑇 (𝑏𝑖).

• If we have 𝐿𝑜𝑝𝑡(𝑑𝑖) = 𝐹 (𝑑𝑖) at point 𝑑𝑖, then 𝐿𝑜𝑝𝑡 curve must decrease
its slope at 𝑑 = 𝑑𝑖.

• If we have 𝐿𝑜𝑝𝑡(𝑏𝑖) = 𝑇 (𝑏𝑖) at point 𝑏𝑖, then 𝐿𝑜𝑝𝑡 curve must increase
its slope at 𝑑 = 𝑏𝑖.

emma 8 (Uniqueness). If there exists an optimal accumulation curve
𝑜𝑝𝑡(𝑑) that satisfies Lemma 7, then 𝐿𝑜𝑝𝑡(𝑑) must be unique.

roof. See Appendix D.

Based on Lemmas 7 and 8, we can deduce that if an algorithm
beys optimal accumulation curve property in Lemma 7, the algorithm
ust be optimal. We therefore propose an optimal energy-efficient

flight speed scheduling (Offspeeding) algorithm to solve the offline
EESS problem. This algorithm guarantees that its output curve obeys
the properties in Lemma 7, which is denoted as 𝐿(𝑑).

The basic idea is simple: we find the first piece of the sub-line and
hen the same problem repeats. To find the first sub-line, we only need
o locate the first slope changing point. From Lemma 7, we have known
hat such a point must be either on the lower bound curve 𝐹 (𝑑) at
𝑑 = 𝑑𝑖 or on the upper bound curve 𝑇 (𝑑) at 𝑑 = 𝑏𝑖, i.e., the corners
f both curves. We therefore test every possible corner. An example is
llustrated in Fig. 8. We connect the origin and a corner to see whether
he resulting line is feasible. We test every corner in the order of the
orner’s distance. Unless the current line is infeasible, we continue to
est the next corner. The very last feasible sub-line is the one we are
ooking for, and the corner is the optimal first slope changing point.
he detailed formal steps are presented in Algorithm Offspeeding.

Algorithm 3 Offspeeding
Input: Number of IoT devices 𝑚

(𝑏𝑖, 𝑑𝑖), 𝑡∗𝑖 , 𝑡
+
𝑖 , 𝑖 = 1, 2,⋯ , 𝑚

utput: UAV’s flight speed 𝑣𝑗 in each iteration 𝑗
UAV’s flying energy 𝐸𝑓𝑙𝑦

1: 𝑖 = 1, 𝑗 = 1, 𝑣 = ∅, 𝐸𝑓𝑙𝑦 = 0, 𝑞1 = (0, 0)
2: while 𝑖 <= 𝑚 do
3: 𝑙𝑗 is the line from 𝑞𝑖 to (𝑑𝑖, 𝐹 (𝑑𝑖))
4: 𝑙′𝑗 is the line from 𝑞𝑖 to (𝑏𝑖, 𝑇 (𝑏𝑖))
5: 𝑠𝑗 is slope of 𝑙𝑗
6: 𝑠′𝑗 is slope of 𝑙′𝑗
7: if Extension line of 𝑙𝑗 intersects 𝑇 (𝑑) then
8: 𝑣𝑗 =

1
𝑠𝑗

9: 𝑣 = 𝑣 ∪ {𝑣𝑗}
0: 𝑗 = 𝑗 + 1, 𝑞𝑗 = (𝑑𝑖, 𝐹 (𝑑𝑖))
1: end if
2: if Extension line of 𝑙′𝑗 intersects 𝐹 (𝑑) then
3: 𝑣𝑗 =

1
𝑠′𝑗

14: 𝑣 = 𝑣 ∪ {𝑣𝑗}
15: 𝑗 = 𝑗 + 1, 𝑞𝑗 = (𝑏𝑖, 𝑇 (𝑏𝑖))
16: end if
17: i=i+1
18: end while
19: Calculate 𝐸𝑓𝑙𝑦 based on 𝑣 and 𝑞
20: Return 𝑣, 𝐸𝑓𝑙𝑦

To better understand Algorithm Offspeeding, examples in Fig. 8 are
provided to illustrate the detailed steps.

In Fig. 8, the accumulation curve starts from the origin point (0, 0),
nd it goes between the two bound curve 𝑇 (𝑑) and 𝐹 (𝑑). To better

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 8. The way algorithm Offspeeding works. In each step, algorithm Offspeeding attempts to find the longest straight line 𝑙𝑗 between 𝑇 (𝑑) and 𝐹 (𝑑). Specifically, we test every
corner in the order of the corner’s value 𝑑. Unless the current line is infeasible, we continue to test the next corner. The very last feasible sub-line is the one we are looking for,
and the corner is the optimal first slope changing point. The algorithm terminates when the UAV reaches destination 𝑑𝑖, and the slope of each sub-line is the reciprocal number
of UAV’s velocity.
illustrate algorithm Offspeeding, we define 𝐹𝑡 as the set of sub-lines
that interact with upper bound 𝑇 (𝑑), and 𝐹𝑓 as set of sub-lines that
interact with lower bound 𝐹 (𝑑). During each step, we attempt to find
the boundary sub-line between set 𝐹𝑡 and 𝐹𝑓 . For instance, in step 1,
red-full line 𝑙1 is the boundary sub-line, for 𝑙1 intersects with direction
changing corner of 𝐹 (𝑑) and its extension line intersects with 𝑇 (𝑑). In
step 2, the red-full line 𝑙2 is the boundary sub-line, since 𝑙2 intersects
with direction changing corner of 𝑇 (𝑑) and its extension line intersects
with 𝐹 (𝑑). Step 3 and step 4 are similar to previous steps, and the
iteration ends until UAV reaches the destination point 𝑑5.

Theorem 3. Algorithm Offspeeding can achieve the optimal solution of
the EESS problem in 𝑂(𝑚2) step.

Proof. See Appendix E.

7. The online heuristic algorithm

In the previous section, we propose an optimal offline algorithm
Offspeeding to solve the EESS problem. In this section, we utilize
the results of Offspeeding to consider more realistic scenarios that
9

information from IoT devices keeps unknown until the UAV flies close,
and present an online algorithm, called EDS (emergency deadline sim-
ulation), to minimize the propulsion energy of the UAV.

The basic idea of EDS is similar to Algorithm 1, which first connects
the UAV’s current state 𝑞𝑝 to every corner of lower bound 𝐹 (𝑑) one
by one, and chooses the line with largest slope until the UAV flies
out of communication range of the 𝑚th IoT device. However, different
from Algorithm 1, the UAV does not know the existence of IoT devices
until flying into their communication range, and can only determine
the local optimal flight speed 𝑣𝑗 according to the current information
from known IoT devices. Therefore, the UAV flight speed obtained by
Algorithm EDS is a set of flight speed, which is determined at the time
when the UAV enters or flies out of the communication range of an IoT
device.

In Algorithm EDS, parameter 𝑣 is defined as set of UAV’s flight
speed, and 𝑞𝑝 is the current state of UAV in iteration 𝑝 (line 1). Variable
𝑘 represents the number of IoT devices the UAV has already known and
𝑗 is denoted as the number of IoT devices the UAV has flown passed
(line 2).

Once the UAV enters the communication range of a new IoT device
(line 4-line 9) or flies out of the communication range of a known
IoT device (line 10-line 15), Algorithm EDS will determine a new

Computer Networks 183 (2020) 107577W. Ye et al.

O

a
u
t
U

Algorithm 4 Online algorithm EDS
Input: Receiving time for each task 𝑡∗𝑖

Computing time for each task 𝑡+𝑖
Communication range of each IoT device 𝑖, from (𝑏𝑖,0) to (𝑑𝑖,0)
Number of IoT devices 𝑚

utput: UAV’s flight speed 𝑣
UAV’s flying energy 𝐸𝑓𝑙𝑦

1: 𝑞1 = (0, 0), 𝑣 = ∅
2: 𝑘 = 0, 𝑗 = 1, 𝑝 = 1
3: while 𝑗 <= 𝑚 do
4: if UAV flies into a new IoT device’s communication range then
5: UAV acquires its current flight state 𝑞𝑝
6: 𝑘 = 𝑘 + 1, 𝑚′ = 𝑘 − 𝑗 + 1
7: Use Algorithm 1 to calculate 𝑣′ with input of

{𝑚′, 𝑡∗𝑖 , 𝑡
+
𝑖 , 𝑏𝑖, 𝑑𝑖, 𝑞𝑝}, where 𝑗 ≤ 𝑖 ≤ 𝑘.

8: 𝑣 = 𝑣 ∪ {𝑣′[1]}, 𝑝 = 𝑝 + 1.
9: end if

10: if UAV flies out of an IoT device’s communication range then
11: UAV acquires its current flight state 𝑞𝑝
12: 𝑗 = 𝑗 + 1, 𝑚′ = 𝑘 − 𝑗 + 1
13: Use Algorithm 1 to calculate 𝑣′ with input of

{𝑚′, 𝑡∗𝑖 , 𝑡
+
𝑖 , 𝑏𝑖, 𝑑𝑖, 𝑞𝑝}, where 𝑗 ≤ 𝑖 ≤ 𝑘.

14: 𝑣 = 𝑣 ∪ {𝑣′[1]}, 𝑝 = 𝑝 + 1.
15: end if
16: end while
17: Calculate 𝐸𝑓𝑙𝑦 based on 𝑣 and 𝑞
18: Return 𝑣, 𝐸𝑓𝑙𝑦

flight speed. Specifically, it first acquires its current state 𝑞𝑝 (line 5
nd line 11) and the number of current serving tasks 𝑚′. Then, we
tilize Algorithm 1 to obtain the optimal flight speed 𝑣′ according to
he information of current 𝑚′ devices (line 7 and line 13). Then the
AV changes its flight speed as the first element of set 𝑣′, named 𝑣′[1],

for the following elements in 𝑣′ might be varied when the UAV flies
into communication range of a new IoT device (line 8 and line 14).

Algorithm EDS terminates when the UAV flies out of communication
range of the 𝑚th IoT device and we calculate the total propulsion
energy 𝐸𝑓𝑙𝑦 according to set 𝑣 and 𝑞𝑝 (line 17).

Time complexity of Algorithm EDS is 𝑂(𝑚2), for the algorithm first
travels all the 𝑚 users and then uses Algorithm 1 to find the optimal
flight speed for UAV in IoT device 𝑚′. The time complexity of first step
is 𝑂(𝑚), and the complexity for second step is also 𝑂(𝑚). Overall, the
time complexity of algorithm EDS is 𝑂(𝑚2).

8. Performance evaluation

In this section, simulation experiments are conducted to evaluate
the performance of optimal offline algorithm Offspeeding and online
algorithm EDS.

8.1. Experimental setting

In our experiments, the UAV flies at a fixed altitude 𝐻 = 100 m.
A computational edge node is mounted on the UAV to deal with tasks
uploaded from 5 to 1000 IoT devices. Each IoT device 𝑖 only has one
individual task 𝑢𝑖 to be dealt with, and communication range of IoT
devices 𝐶𝑟𝑖 is ranging from 5 m to 60 m. The receiving time 𝑡∗𝑖 is within
range of 0.005 s to 2 s, and computing time 𝑡+𝑖 is 0.15 ∼ 0.35 times of
𝑡∗𝑖 . Overall, we present simulation parameters, as shown in Table 1[25].

To better illustrate the advantage of our algorithms, we present
another online algorithm LDS based on a simple strategy. We first
define a concept named 𝑇𝑃𝐷 (Time Per Distance) for each IoT device
𝑖, whose value is 𝑡∗𝑖 +𝑡

+
𝑖 for each 𝑖. In algorithm LDS, the UAV calculates
10

𝐶𝑟𝑖
Table 1
Simulation parameters.

Parameters Meaning Value

𝑡∗𝑖 Receiving time for each IoT device 0.005 s∼2 s
𝑡+𝑖 Computing time for each IoT device 0.15∼0.35 times of 𝑡∗𝑖
𝑚 Number of IoT devices 50∼1000
𝑣𝑚𝑎𝑥 Maximum flight speed 60 m/s
𝐻 Altitude of the UAV 100 m
𝑐1 Parameter of energy model 9.26 ∗ 10−4

𝑐2 Parameter of energy model 2250
𝐶𝑟 Communication range of IoT device 5 m∼60 m

𝑇𝑃𝐷 for each IoT device 𝑖, and acquires the number of IoT devices
it serves each time, denoted as 𝑚′. Parameter 𝐷𝑖𝑠(𝑝) is defined as the
distance where number of IoT devices 𝑚′ that the UAV serves does
not change, and 𝑝 is number of distance varied from 1 to 2𝑚 + 1.
Then, value of 𝑇𝑃𝐷 in distance 𝐷𝑖𝑠(𝑝) is the sum of 𝑚′ IoT device’s
𝑇𝑃𝐷 number, and the flight speed 𝑣 is the reciprocal for its 𝑇𝑃𝐷. For
instance, if the UAV serves two IoT devices 𝑖 and 𝑗 in distance 𝐷𝑖𝑠(2),
then 𝑇𝑃𝐷𝐷𝑖𝑠(2) = 𝑇𝑃𝐷𝑖 + 𝑇𝑃𝐷𝑗 and 𝑉𝐷 = 1

𝑇𝑃𝐷𝐷
, and flight speed

𝑣𝐷𝑖𝑠(2) =
1

𝑇𝑃𝐷𝑖+𝑇𝑃𝐷𝑗
.

Besides, another proposed algorithm named ALG [32] is also used to
compare with Algorithm Offspeeding and EDS. The core idea of ALG is
to divide the transmission task into two sets, the average transmission
rate and the remaining rate, and updates the receiving rate of task
according to the comparison the flight speed in these two sets, which
is a "Max remaining-time" algorithm. If we analog the transmission
energy of wireless device as the propulsion energy of UAV, and assume
transmission rate as the flight speed of UAV, ALG can be utilized to
solve the EESS problem proposed in this work.

On the basis, simulation experiments are conducted to evaluate
performance of optimal offline algorithm Offspeeding, online algorithm
EDS and compared algorithms LDS and ALG.

8.2. Impact of the number of IoT devices

In this part, a group of experiments discussing the relationship
between propulsion energy of UAV and the number of IoT devices are
conducted. Let 𝐶𝑟𝑖 = 50m be communication range for each IoT device
𝑖, and the overlapping range between device 𝑖 and 𝑖+1 is denoted by 𝑥𝑖,
i.e., 𝑥𝑖 is 0.15 ∼ 0.35 times of 𝐶𝑟𝑖. In addition, receiving time for each
IoT device is 𝑡∗𝑖 = 1𝑠 and its computing time 𝑡+𝑖 is 0.15 ∼ 0.35 times of
𝑡∗𝑖 . Based on these settings, we compare the propulsion energy of UAV
among Offspeeding, EDS, ALG and LDS while the number of IoT devices
is varying from 50 to 1000.

The results are shown in Fig. 9. It can be seen from this figure
that Algorithm Offspeeding performs the best and the performance of
Algorithm EDS is near to that of Algorithm Offspeeding. Algorithm ALG
costs more energy than EDS and Offspeeding, for it only considers the
flight speed among two neighboring SNs, EDS considers all the SNs
whose information is known by the UAV and Offspeeding considers
information of all SNs. The gap between Algorithm Offspeeding and
Algorithm EDS is growing when the number of SN increases, for Off-
speeding always achieves the optimal results for each SN, but Algorithm
EDS does not, leading to a gap between Algorithm Offspeeding and
Algorithm EDS. When the number of IoT devices increases, Algorithm
EDS will have more chances to work out different solutions than that of
Algorithm Offspeeding, leading to a larger accumulative gap between
Algorithm EDS and Algorithm Offspeeding.

8.3. Impact of deployment density of IoT devices

In this part, we conduct a group of experiments discussing the UAV’s
propulsion power and IoT devices’ deployment density. Specifically,

the total flight distance of UAV is limited as 3000 m, and we deploy

Computer Networks 183 (2020) 107577W. Ye et al.

e

e

a
T

Fig. 9. The impact of IoT device number on algorithm performance by propulsion
nergy.

Fig. 10. The impact of the IoT device density on algorithm performance by propulsion
nergy.

veragely 50 ∼ 1000 IoT devices among the flight path of the UAV.
hen, average communication range for each IoT device is 3000

𝑚 .
Parameter 𝑥𝑖 ∈ 𝑋 is defined as overlapping range between IoT

device 𝑖 and 𝑖+1, i.e., 𝑥𝑖 is 0.15 ∼ 0.35 times of average communication
range 3000

𝑚 . To this end, communication range for each IoT device 𝑖 can
be written follows:

𝑐𝑟𝑖 =

⎧

⎪

⎨

⎪

⎩

3000
𝑚 + 𝑥𝑖 𝑖 = 1

3000
𝑚 + 𝑥𝑖−1 + 𝑥𝑖 1 < 𝑖 < 𝑚

3000
𝑚 + 𝑥𝑖−1 𝑖 = 𝑚

Receiving time in this experiment is 𝑡∗𝑖 = 1 s, and computing time
+ ∗
11

𝑡𝑖 is 0.15 ∼ 0.35 times of 𝑡𝑖 .
Fig. 11. The impact of the computing time on algorithm performance by propulsion
energy.

The results are shown in Fig. 10. Similar to previous experiment,
Algorithm Offspeeding achieves the best result in Fig. 10 and result
of Algorithm EDS is near to that of Algorithm Offspeeding. We can
also find that solutions of Algorithm ALG and LDS consume more
energy than that of Algorithm Offspeeding and EDS. Moreover, with the
increasing number of IoT devices, solutions of all the three algorithms
will consume more energy, and the gap between Algorithm LDS and
Algorithm Offspeeding/EDS is also increasing.

8.4. Impact of computing time

In this part, we deploy 500 IoT devices and limit the total flight
distance for UAV as 3000 m. Communication range for each IoT device
is the same to previous section, and the number of IoT devices is 500.
Receiving time for each IoT device is 𝑡∗𝑖 = 5 s, and computing time 𝑡+𝑖
ranges from 0.2 s ∼ 1.4 s for this task.

The results are shown in Fig. 11. Algorithm Offspeeding costs the
least energy compared with three other algorithms EDS, LDS and ALG.
When tasks’ computing time 𝑡+𝑖 increases, energy consumption of the
UAV first decreases and reaches the lowest point when 𝑡+𝑖 = 0.8 s. Then,
propulsion power of UAV increases when 0.8 s < 𝑡+𝑖 < 1.4 s. On the one
hand, when 𝑡+𝑖 < 0.8 s, computing time for each IoT device is too short,
the UAV has to fly faster, which costs more energy than 𝑡+𝑖 = 0.8 s. On
the other hand, when 𝑡+𝑖 > 0.8 s, computing time 𝑡∗𝑖 is too long, the UAV
has to reduce its flight speed and spends more time serving IoT device
𝑖, which also costs more energy.

9. Conclusion

We study the energy efficient flight speed scheduling problem for
UAV-assisted edge computing in this paper. Distinct from most existing
work, this paper focuses on flight speed scheduling that allocates
proper flight speed to minimize the energy consumption of the UAV
with a practical energy model, under the constraints of individual
task execution deadlines and communication ranges. Specifically, we
formulate the EESS problem and devise a novel diagram to visualize
and analyze the problem. Since the EESS problem is complicated to be
solved directly, two simplified special cases EESS-L and EESS-U are first
analyzed and some important properties are obtained for the general
problem. Then, the Algorithm Offspeeding is proposed to solve the

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 12. Suppose 𝐿2 and 𝐿1 are two different solutions that obey Lemma 7 while
satisfying formula (14) and (15) at the same time. However, the assumption is incorrect,
for curve 𝐿1 must be convex and curve 𝐿2 has to be concave under the constraints of
(14) and (15), which disobeys Lemma 3 and Lemma 5. Thus, solution satisfies Lemma 7
must be unique.

general problem EESS, and it is proved to be optimal. On this basis, a
heuristic online algorithm EDS is presented to solve the EESS problem
in more realistic scenarios that information from IoT devices keeps
unknown until the UAV flies close. Finally, simulation experiments
are conducted to evaluate our proposed algorithms and the results
demonstrate that our online algorithm EDS is near optimal.

In the future, a fine-grained energy consumption model is consid-
ered including communication and computing energy of the UAV. On
this basis, we aim to minimize the energy consumption of the UAV
under the deadline constraints by designing an optimal trajectory and
proper flight speeds.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Proof of Lemma 1

Proof. Since 𝑝(𝑣) = 𝑐1 ∗ 𝑣3 + 𝑐2
𝑣 , we have 𝑝(𝑣)′′ = (𝑐1 ∗ 𝑣(𝑑)3 + 𝑐2

𝑣(𝑑))
′′ =

6𝑐1 ∗ 𝑣(𝑑) + 2∗𝑐2
𝑣(𝑑)3 > 0, so it is a convex function. ■

Appendix B. Proof of Lemma 3

Proof. We prove by contradiction. Suppose curve 𝑙𝐿𝑜𝑝𝑡 increases its slope
that consumes less energy than decreases its slope. An example is given
in Fig. 6, in which the accumulation curves 𝑙1, 𝑙2 and 𝑙3 decrease their
slopes. Assume the optimal curves 𝑙𝐿𝑜𝑝𝑡 is different from 𝑙1, 𝑙2, 𝑙3, e.g.,
the UAV flies in curves 𝑙′1, 𝑙

′
2, 𝑙2, 𝑙3, where slope of 𝑙′2, defined as 𝑠′2 is

larger than 𝑠′1, the slope of sub-line 𝑙′1. Obviously, we have inequation
𝑠′2 > 𝑠1 > 𝑠′1. According to Lemma 2 and Corollary 1, the total energy
consumption of 𝑙′1 and 𝑙′2 is larger than that of 𝑙1, indicating that curve
𝐿𝐿
𝑜𝑝𝑡 is not the optimal when the slope increases. ■
12
Fig. 13. We assume 𝑙𝑗+1 is a solution of algorithm Offspeeding, which disobeys
Lemma 3. For instance, the slope of line 𝑙𝑗+1 satisfies 𝑠𝑗+1 > 𝑠𝑗 when 𝑇 +

𝑗 = 𝐹 (𝑑𝑗).
However, the assumption is incorrect, for 𝑙𝑗+1 is included in set of previous solution
𝑙𝑗 , where 𝑙𝑗+1 ∈ 𝐹𝑡𝑗 (marked in red horizon line), which indicates that 𝑙𝑗+1 is not the
solution of Offspeeding. Thus, solution of Offspeeding must obey Lemma 3.

Appendix C. Proof of Lemma 4

Proof. We prove Lemma 4 by contradiction. Suppose curve 𝑙𝐿𝑜𝑝𝑡 does
not intersect with lower bound 𝐹 (𝑑) and consumes less energy. An
example is given in Fig. 6, in which the accumulation curves 𝑙1, 𝑙2 and
𝑙3 decrease their slopes. Assume the optimal curves 𝑙𝐿𝑜𝑝𝑡 different from
𝑙1, 𝑙2, 𝑙3, e.g., the UAV flies in curves 𝑙′4 and 𝑙′5 that does not intersect
with lower bound 𝐹 (𝑑). Obviously, we can find another existing sub-
line 𝑙′5 between 𝑙′3 and 𝑙′4, whose slope satisfies 𝑠′3 > 𝑠′5 > 𝑠′4, According
to Lemma 2 and Corollary 1, the total energy consumption of 𝑙′3 and
𝑙′4 is larger than that of 𝑙′5, indicating that curve 𝐿𝐿

𝑜𝑝𝑡 is not the optimal
when 𝑙𝐿𝑜𝑝𝑡 does not intersect with lower bound 𝐹 (𝑑).

Appendix D. Proof of Lemma 8

Proof. We assume that there exists more than one solution that satisfies
Lemma 7. Let 𝑙1 and 𝑙2 be two different curves in solution 𝐿, 𝑙1 and 𝑙2
are the same in [0, 𝑎] and [𝑏,𝐷], but different in (𝑎, 𝑏), where:
{

𝑙1(𝑑) = 𝑙2(𝑑) 0 ≤ 𝑑 ≤ 𝑎, 𝑏 ≤ 𝑑 ≤ 𝐷
𝑙1(𝑑) ≠ 𝑙2(𝑑) 𝑎 < 𝑑 < 𝑏

(14)

Without loss of generally, we assume 𝑙1(𝑖) ≤ 𝑙2(𝑖), 𝑖 ∈ (𝑎, 𝑏), thus

𝐹 (𝑖) ≤ 𝑙1(𝑖) < 𝑙2(𝑖) ≤ 𝑇 (𝑖), 𝑖 ∈ (𝑎, 𝑏) (15)

For the assumption, 𝑙1(𝑎) = 𝑙2(𝑎) and 𝑙1(𝑖) > 𝑙2(𝑖) when 𝑖 ∈ (𝑎, 𝑏), and
𝑙1(𝑏) = 𝑙2(𝑏), shown in Fig. 12.

Based on Lemma 4, 𝑙1(𝑖) must intersect with 𝐹 (𝑖) when 𝑖 < 𝑏, for
𝐹 (𝑖) ≤ 𝑙1(𝑖) ≤ 𝑙2(𝑖) ≤ 𝑇 (𝑖), 𝑖 ∈ (𝑎, 𝑏). On the other hand, 𝑙2(𝑖) must
intersect with 𝑇 (𝑖), 𝑖 ∈ (𝑎, 𝑏) based on Lemma 6. To let 𝑙1(𝑏) = 𝑙2(𝑏),
𝑙1(𝑖) must be a convex function and 𝑙2(𝑖) must be a concave function,
which violates Lemma 3 and Lemma 5.

Therefore, it is impossible for 𝑙1 and 𝑙2 to both obey Lemma 7 under
constraints of (14) and (15) , which is contradicted to the assumption,
which proves that solution obeys Lemma 7 must be unique. ■

Appendix E. Proof of Theorem 3

Proof. Lemma 8 proves that if there exists an algorithm that satisfies
Lemmas 3–6, it must be an optimal algorithm for EESS problem.

Thus, this part proves Algorithm Offspeeding satisfies Lemmas 3–6.
For Lemmas 4 and 6, Algorithm Offspeeding results intersect either
with 𝐹 (𝑑) or with 𝑇 (𝑑) (line 7 and line 12 in Offspeeding).

Computer Networks 183 (2020) 107577W. Ye et al.
Fig. 14. We assume 𝑙𝑗+1 is a solution of algorithm Offspeeding, which disobeys
Lemma 5. For instance, the slope of line 𝑙𝑗+1 satisfies 𝑠𝑗+1 < 𝑠𝑗 when 𝑇 +

𝑗 = 𝑇 (𝑏𝑗).
However, the assumption is incorrect, for 𝑙𝑗+1 is included in set of previous solution 𝑙𝑗 ,
where 𝑙𝑗+1 ∈ 𝐹𝑓𝑗 (marked in green horizon line), which indicates that 𝑙𝑗+1 is not the
solution of Offspeeding. Thus, solution of Offspeeding must obey Lemma 5.

For Lemma 3, we assume a counter-example that Offspeeding inter-
sects 𝐹 (𝑑) in iteration 𝑗, and the slope of next iteration satisfies 𝑠𝑗+1 > 𝑠𝑗
(shown in Fig. 13) . In this scenario, the new solution 𝐿𝑗+1 will be
included in previous upper bound area 𝐹𝑡𝑗 (Marked as red line), for
slope of 𝐿𝑗+1 is 𝑠𝑗+1 and satisfies 𝑠𝑗+1 > 𝑠𝑗 , which is incorrect. Thus,
this scenario is impossible, and Algorithm Offspeeding obeys Lemma 3.

For Lemma 5, we also assume a counter-example that Offspeeding
intersects with 𝑇 (𝑑) in iteration 𝑗, and the slope of next iteration
satisfies 𝑠𝑗+1 < 𝑠𝑗 (shown in Fig. 14). In this scenario, the new solution
𝐿𝑗+1 will be included in previous upper bound area 𝐹𝑓𝑗 (Marked as red
line), for slope of 𝐿𝑗+1 is 𝑠𝑗+1 and satisfies 𝑠𝑗+1 < 𝑠𝑗 , which is incorrect.
Thus, this scenario is impossible, and Offspeeding obeys Lemma 5.

Overall, Offspeeding obeys Lemmas 3–6, thus it must be the optimal
algorithm.

In each iteration of algorithm Offspeeding, we attempt to find the
longest feasible sub-line starting from the origin point, and the destina-
tion of this sub-line is the start point of the next iteration. Then, for the
worst case, the UAV starts from the origin point and unfortunately tests
all the other points before finding the suitable sub-line, i.e., the nearby
point from the origin point. Under this circumstance, total number of
iterations should be (2𝑚−1)+(2𝑚−2)+⋯+1, which is 2𝑚2−𝑚. Therefore,
the complexity of algorithm Offspeeding is 𝑂(𝑚2). ■

Appendix F. Minimum-propulsion-power speed of UAV

Proof. Denote 𝑣∗ as the UAV’s minimum-propulsion-power flight
speed. Based on Eq. (1), power consumption of UAV is:

𝑝(𝑣) = 𝑐1 ∗ 𝑣3 + 𝑐2
𝑣

Since Appendix A has proved the equation to be convex, the deriva-
tion of equation is:

𝑝′(𝑣) = (3𝑐1 ∗ 𝑣2 − 𝑐2
𝑣2
)

Let 𝑝′(𝑣) = 0, then the optimal flight speed 𝑣∗ is:

𝑣∗ = 4
√

𝑐2
3𝑐1

■

References

[1] Z. Yu, Y. Gong, S. Gong, Y. Guo, Joint task offloading and resource allocation
in UAV-enabled mobile edge computing, IEEE Internet Things J. 7 (4) (2020)
3147–3159.
13
[2] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, Joint computation and communication
design for UAV-assisted mobile edge computing in IoT, IEEE Trans. Ind. Inf. 16
(8) (2020) 5505–5516.

[3] H. Guo, J. Liu, UAV-enhanced intelligent offloading for internet of things at the
edge, IEEE Trans. Ind. Inf. 16 (4) (2020) 2737–2746.

[4] J. Zhang, L. Zhou, Q. Tang, E.C. Ngai, X. Hu, H. Zhao, J. Wei, Stochastic
computation offloading and trajectory scheduling for UAV-assisted mobile edge
computing, IEEE Internet Things J. 6 (2) (2019) 3688–3699.

[5] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, X. Shen, Energy-efficient UAV-assisted
mobile edge computing: Resource allocation and trajectory optimization, IEEE
Trans. Veh. Technol. 69 (3) (2020) 3424–3438.

[6] S. Jeong, O. Simeone, J. Kang, Mobile edge computing via a UAV-mounted
cloudlet: Optimization of bit allocation and path planning, IEEE Trans. Veh.
Technol. 67 (3) (2018) 2049–2063.

[7] Qiyu Hu, Yunlong Cai, Guanding Yu, Zhijin Qin, Minjian Zhao, Geoffrey Ye Li,
Joint offloading and trajectory design for UAV-enabled mobile edge computing
systems, IEEE Internet Things J. 16 (99) (2018) 476–490.

[8] Xiaowen Cao, Jie Xu, Rui Zhang, Mobile edge computing for cellular-connected
UAV: Computation offloading and trajectory optimization, in: 2018 IEEE 19th In-
ternational Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018, pp. 1–5.

[9] X. Hu, K. Wong, K. Yang, Z. Zheng, UAV-assisted relaying and edge computing:
Scheduling and trajectory optimization, IEEE Trans. Wireless Commun. 18 (10)
(2019) 4738–4752.

[10] Q. Zhang, M. Jiang, Z. Feng, W. Li, W. Zhang, M. Pan, IoT enabled UAV:
Network architecture and routing algorithm, IEEE Internet Things J. 6 (2) (2019)
3727–3742.

[11] X. Diao, J. Zheng, Y. Cai, Y. Wu, A. Anpalagan, Fair data allocation and trajectory
optimization for UAV-assisted mobile edge computing, IEEE Commun. Lett. 23
(12) (2019) 2357–2361.

[12] Dimitrios Sikeridis, Eirini Eleni Tsiropoulou, Michael Devetsikiotis, Symeon
Papavassiliou, Wireless powered public safety IoT: A UAV-assisted adaptive-
learning approach towards energy efficiency, J. Netw. Comput. Appl. 123 (2018)
69–79.

[13] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, Y. Liu, Multi-UAV-enabled
load-balance mobile-edge computing for IoT networks, IEEE Internet Things J.
7 (8) (2020) 6898–6908.

[14] R. Duan, J. Wang, J. Du, C. Jiang, T. Bai, Y. Ren, Power-delay trade-off for
heterogenous cloud enabled multi-UAV systems, in: ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), 2019, pp. 1–6.

[15] Yuwen Qian, Feifei Wang, Jun Li, Long Shi, Feng Shu, User association and
path planning for UAV-aided mobile edge computing with energy restriction,
IEEE Wirel. Commun. Lett. WCL (2019).

[16] Xiaoyan Hu, Kai Kit Wong, Kun Yang, Zhongbin Zheng, UAV-assisted relay-
ing and edge computing: Scheduling and trajectory optimization, IEEE Trans.
Wireless Commun. PP (99) (2019) 1.

[17] Y. Liu, K. Xiong, Q. Ni, P. Fan, K.B. Letaief, UAV-assisted wireless powered
cooperative mobile edge computing: Joint offloading, cpu control, and trajectory
optimization, IEEE Internet Things J. 7 (4) (2020) 2777–2790.

[18] Yong Zeng, Qingqing Wu, Rui Zhang, Accessing from the sky: A tutorial on UAV
communications for 5G and beyond, Proc. IEEE 107 (12) (2019) 2327–2375.

[19] Zeng Yong, Zhang Rui, Energy-efficient UAV communication with trajectory
optimization, IEEE Trans. Wireless Commun. 16 (6) (2017) 3747–3760.

[20] C. Zhang, W. Zhang, Spectrum sharing for drone networks, IEEE J. Sel. Areas
Commun. 35 (1) (2017) 136–144.

[21] S. Eom, H. Lee, J. Park, I. Lee, UAV-aided wireless communication design
with propulsion energy constraint, in: 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[22] J. Xu, Y. Zeng, R. Zhang, UAV-enabled wireless power transfer: Trajectory
design and energy optimization, IEEE Trans. Wireless Commun. 17 (8) (2018)
5092–5106.

[23] Y. Liu, K. Xiong, Q. Ni, P. Fan, K.B. Letaief, UAV-assisted wireless powered
cooperative mobile edge computing: joint offloading, cpu control, and trajectory
optimization, IEEE Internet Things J. 7 (4) (2020) 2777–2790.

[24] F. Zhou, Y. Wu, R.Q. Hu, Y. Qian, Computation rate maximization in UAV-
enabled wireless-powered mobile-edge computing systems, IEEE J. Sel. Areas
Commun. 36 (9) (2018) 1927–1941.

[25] Yong Wang, Zhi-Yang Ru, Kezhi Wang, Peiqiu Huang, Joint deployment and
task scheduling optimization for large-scale mobile users in multi-UAV-enabled
mobile edge computing, IEEE Trans. Cybern. PP (2019) 1–14.

[26] C.D. Franco, G. Buttazzo, Energy-aware coverage path planning of uavs, in: 2015
IEEE International Conference on Autonomous Robot Systems and Competitions,
2015, pp. 111–117.

[27] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Merouane Debbah, Mo-
bile unmanned aerial vehicles (UAVs) for energy-efficient internet of things
communications, IEEE Trans. Wireless Commun. 16 (11) (2017) 7574–7589.

[28] Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with
rotary-wing UAV, IEEE Trans. Wireless Commun. 18 (4) (2019) 2329–2345.

[29] Mohamed Alzenad, Amr El-Keyi, Faraj Lagum, Halim Yanikomeroglu, .3D place-
ment of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient
maximal coverage, IEEE Wirel. Commun. Lett 6 (4) (2017) 434–437.

http://refhub.elsevier.com/S1389-1286(20)31219-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb2
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb2
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb2
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb2
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb2
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb13
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb13
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb13
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb13
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb13
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb16
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb16
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb16
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb16
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb16
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb21
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb21
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb21
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb21
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb21
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb23
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb23
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb23
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb23
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb23
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb29

Computer Networks 183 (2020) 107577W. Ye et al.
[30] A. Trotta, F.D. Andreagiovanni, M. Di Felice, E. Natalizio, K.R. Chowdhury, When
UAVs ride a bus: Towards energy-efficient city-scale video surveillance, in: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp.
1043–1051.

[31] Murtaza A. Zafer, Eytan Modiano, A calculus approach to energy-efficient data
transmission with quality-of-service constraints, IEEE/ACM Trans. Netw. 17 (3)
(2009) 898–911.

[32] W. Wu, J. Wang, M. Li, K. Liu, F. Shan, J. Luo, Energy-efficient transmission
with data sharing in participatory sensing systems, IEEE J. Sel. Areas Commun.
34 (12) (2016) 4048–4062.

Weidu Ye received the B.S. degree in Computer Science
from Nanjing Forestry University in 2015. He is currently
working towards the Ph.D. degree in the School of Computer
Science and Engineering in Southeast University, Nanjing,
China. His research interests include edge computing and
UAV-assisted networking.

Junzhou Luo received the B.S. degree in applied mathe-
matics and the MS and Ph.D. degrees in computer network,
all from Southeast University, China, in 1982, 1992, and
2000, respectively. He is a full professor in the School of
Computer Science and Engineering, Southeast University. He
is a member of the IEEE Computer Society and co-chair
of IEEE SMC Technical Committee on Computer Supported
Cooperative Work in Design, and he is a member of the ACM
and chair of ACM SIGCOMM China. His research interests
are next generation network architecture, network security,
cloud computing, and wireless LAN.
14
Feng Shan received the Ph.D. degree in computer sci-
ence from Southeast University, Nanjing, China, in 2015.
He is currently an associate professor with the School of
Computer Science and Engineering, Southeast University.
He was a Visiting Scholar with the School of Computing
and Engineering, University of Missouri-Kansas City, Kansas
City, MO, USA, from 2010 to 2012. His current research
interests include energy harvesting, wireless power transfer,
UAV-assisted networking, swarm intelligence, and algorithm
design and analysis.

Wenjia Wu received the B.S. and Ph.D. degrees in computer
science in 2006 and 2013, respectively, from Southeast
University. He is an associate professor at the School of
Computer Science and Engineering in Southeast University.
His research interests include wireless and mobile networks.

Ming Yang received the Ph.D. degree in computer science
from Southeast University, Nanjing, in 2007. Currently, he
is an associate professor at the School of Computer Science
and Engineering in Southeast University, Nanjing, China. His
research interests include network security and privacy. He
is a member of CCF and ACM, as well as deputy director
of Key Laboratory of Computer Network and Information
Integration, Ministry of Education.

http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31219-6/sb32

	Offspeeding: Optimal energy-efficient flight speed scheduling for UAV-assisted edge computing
	Introduction
	Related works
	UAV-assisted edge computing
	Energy saving strategies of UAV
	Energy efficient UAV-assisted edge computing

	System model and problem formulation
	Network model
	Energy consumption model
	Problem formulation

	Graphical virtualization and optimality properties
	Graphical virtualization for the EESS problem
	Optimality properties

	Optimal solution for special cases
	EESS problem sharing starting position
	EESS problem sharing terminating position

	Offspeeding algorithm for the general case
	The online heuristic algorithm
	Performance evaluation
	Experimental setting
	Impact of the number of IoT devices
	Impact of deployment density of IoT devices
	Impact of computing time

	Conclusion
	Declaration of competing interest
	Appendix A. Proof of Lemma 1
	Appendix B. Proof of Lemma 3
	Appendix C. Proof of Lemma 4
	Appendix D. Proof of Lemma 8
	Appendix E. Proof of Theorem 3
	Appendix F. Minimum-propulsion-power speed of UAV
	References

