
1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

1

Providing Service Continuity in Clouds under
Power Outage

Weiwei Wu, Member, IEEE, Jianping Wang, Member, IEEE, Kejie Lu, Member, IEEE, Wen Qi,
Feng Shan, Member, IEEE, Junzhou Luo, Member, IEEE

Abstract—In cloud computing, it is crucial to maintain service
continuity, while power outage is one of the most common and
serious threats. To improve the resilience of cloud against power
outage, a service provider usually deploys emergency energy
supply (e.g., UPSs and generators) in a data center. When a
power outage at a data center happens, the cloud service provider
needs to make the operation decision on which subset of VMs to
keep running and which servers to host such VMs to minimize
its loss (or maximize its profit) using the emergency energy
supply while the selected VMs are running in the affected data
center until they are finished, migrated to other data centers,
or normal power supply of the affected data center has been
restored. No prior research has theoretically studied such a
cloud service continuity problem under power outage. In this
paper, we tackle this challenge and investigate the cloud service
continuity problem. Specifically, we consider that a profit is
associated with maintaining the continuity of a service, denoted
as service continuity profit. Based on that we first formulate
an optimization problem that aims to maximize the total profit
subject to energy constrains. After showing the hardness of the
problem, we focus on the design of approximation algorithms for
solving the problem, where we consider two practical cases. In
the first one with sufficient number of servers for re-provisioning,
we develop a constant approximation algorithm of which the
worst-case performance approaches the optimal solution within
a constant factor (≈ 4.5-6.4). In the second one, we consider the
general case with limited number of servers, and we develop
an approximation algorithm with an approximation ratio of
around 5.7-8. By combining these two algorithms together, we
can achieve both good worst-case performance and average
performance. Simulation results demonstrate the efficiency in
terms of maximizing the service continuity profit of the proposed
algorithms.

Index Terms—Service continuity, power outage, cloud recovery,
VM consolidation, energy-efficient scheduling, approximation
algorithm, profit maximization.

I. INTRODUCTION

Despite the salient features of cloud computing, cloud
services may be interrupted due to various issues. As reported
in [1], [2], data centers across the world suffer frequently
from the outages and costs $600,000 per incident on average.

W. Wu, J. Luo and F. Shan are with School of Computer Science
and Engineering, Southeast University, Nanjing, Jiangsu, P.R.China (Emails:
{weiweiwu, jluo, shanfeng}@seu.edu.cn).

J. Wang and W. Qi are with Department of Computer Science, City
University of Hong Kong, Hong Kong (Email: jianwang@cityu.edu.hk,
qi.wen@my.cityu.edu.hk).

K. Lu is with the Department of Electrical and Computer Engineering,
University of Puerto Rico at Mayaguez, PR, USA, and with the School
of Computer Engineering, Shanghai University of Electric Power, Shanghai,
China, (Email: kejie.lu@upr.edu).

The work is supported in part by Hong Kong Research Grant Council under
GRF 120612 and CRF C7036-15G.

Among the root causes of those outages, the top one is power
outage [1]. For example, Amazon Web Services suffered an
approximately 4-hour power outage in its North Virginia data
center from 8:50 p.m. to 1:09 a.m. on June 14, 2012, causing
major disruption to numerous web companies that rely on
Amazon’s cloud service, including Instagram, Netflix and
Pinterest [3]. In 2015, a cloud data center in Hong Kong that
is part of Alibaba Ltd., the biggest e-commence company of
China, also suffered a 14-hour disruption due to power outage
from 9:37 a.m. to 11:39 p.m. on June 21 [4].

Clearly, service interruption has significant negative impacts
on both the cloud provider and customers, especially for
the critical services sensitive to interruption. To improve the
resilience of cloud services against power outage, there are
two main approaches. First, a common practice in the cloud
industry is to install emergency energy supply, such as UPSs
and generators. Second, since a cloud service provider usually
owns distributed data centers, it can migrate some services
to other data centers that are not affected by power outage,
while migration time varies among different services as it
takes time to launch a Virtual Machine (VM) image, migrate
storage and establish network connection. Based on these
strategies, to maintain the continuity of a service, the VM
supporting the service needs to keep operating locally until the
minimum time point, named deadline, among the time points
at which the service is finished, the VM supporting the service
is successfully migrated to the new data center, or the normal
power supply of the affected data center is back, which can
be considered as the continuity requirement.

Although the approaches above are viable, we note that
there is a lack of a theoretical study in the literature that
addresses how to optimally exploit emergency energy and
external data centers during power outage. In this paper, we
tackle this challenging issue and investigate a cloud service
continuity (CSC) problem under power shortage. Specifically,
we consider that each service has a specific continuity require-
ment, and we define a service continuity value/profit associated
with each VM/service if its continuity requirement is satisfied.
Since the amount of emergency energy supply is limited, the
CSC problem is an optimization problem whose objective is
to maximize the total service continuity profit by identifying
(VM selection) and re-provisioning a subset of existing VMs
to physical machines (PMs) in the local data center, subject
to the resource requirements of VMs, the resource capacity of
PMs, as well as the limitation of emergency energy supply.

Now we use an example shown in Fig. 1 to illustrate
that inefficient utilization of emergency energy may result

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

2

Fig. 1. Two exemplary schedules for providing service continuity. Each
rectangle represents a VM with service continuity requirement, of which the
height is its demand of resource and the width is the time period of continuity
requirement required for running VM locally before the service is finished or
transferred. The light-colored ones fail to keep their service continuity due to
the lack of emergency energy.

in high loss of service continuity profit. In this example,
when power outage strikes, there are five VMs requiring their
service continuity to be satisfied with the support of an amount
U of emergency energy under power outage. Each VM is
represented as a rectangle where the height is its demand
of resource (e.g., CPUs) and the width is the time period of
continuity requirement, during which it needs to keep running
until the service hosted by the VM is finished or transferred.
Suppose simply that there are three PMs in total, each with an
identical capacity of resource. With limited amount of emer-
gency energy, the first schedule chooses/attempts to maintain
the service continuity of VM1 and VM2 by consolidating
them to the first two PMs, each with one VM consolidated,
where eit is the power consumption of PMi at time t. Suppose
that the profit for keeping each VM’s service continuity is
approximately the size of its area. Then, another schedule
that chooses VMs with similar width (VM3, V M4, V M5) and
attempts to fully utilize the resource/capacity of PMs, say, the
second schedule, would gain more overall profit of service
continuity under the same budget constraint of emergency
energy. Compared with the second schedule, the first one
spends too much power on maintaining the continuity of VM1

and keeping PM1 active, but fails to efficiently utilize the
resource as well as the power over time. Therefore, there is
a need for designing efficient scheduling strategy to maintain
service continuity with maximum profit under power outage.

In the literature, such a CSC problem has not been inves-
tigated before but there are some related studies. One of the
most relevant work is VM consolidation [5], [6], with which
VMs can be re-provisioned and idle PMs can be shut down to
reduce the power consumption. Although VM consolidation
has been studied extensively in the past, most of the studies
focus on minimizing the operational cost of a single data center
(e.g. [7]–[10]) or geo-distributed data centers (e.g., [11]–[13]).
Moreover, all these prior work have assumed unlimited power
supply which can support all VMs indefinitely, thus have
no need to study VM selection strategy. This is different
from CSC problem that exploits the limited emergency energy
and needs to design both VM selection strategy and VM
consolidation strategy under power shortage so as to maximize
the total service continuity profit. Besides VM consolidation,
there are some other related work concerning about cloud
recovery, but few works have theoretically addressed the

scheduling problem on providing service continuity during
power outage. A full review can be referred to in Section II.
To summarize, we note that existing studies cannot be applied
to solve our CSC problem which has both different objectives
and constraints.

To fully utilize the limited emergency energy, ideally if
there are sufficient number of PMs for re-provisioning, we
shall select and re-provision VMs to servers according to
their service continuity requirements, i.e., time period during
which they require to keep running in the affected data center.
By doing this, VMs on a server could finish their services
around the same time and then that server can be shut down.
If the number of PMs for re-provisioning is limited, VMs
with various service continuity requirements may have to be
packed together, which will prolong the service time of such
servers under power shortage. In this paper, we consider both
aforementioned scenarios and develop algorithms with con-
stant approximation ratios to maximize the service continuity
profit.

The contributions of this paper are summarized as follows.

• This paper studies the service continuity problem for
cloud data centers under power outage. This is the first
work to theoretically study scheduling algorithms to
exploit the emergency energy and maximize the profit
of keeping service continuity in cloud data centers under
power shortage.

• When the number of PMs for re-provisioning is suffi-
ciently large, we propose a constant approximation algo-
rithm that achieves a profit within around 4.5-6.4 times
of the optimal solution. We first propose a procedure to
get a bundle of VMs with high total profit, and then apply
it iteratively to re-provision each bundle of VMs to a PM
so as to gain high aggregated profit of service continuity.

• When the number of PMs for re-provisioning is limited,
we propose a constant approximation algorithm (with
an approximation ratio ≈ 5.7-8). We introduce a novel
fractional version of the problem with well-organized
optimal structures and transform its optimal solution to
be a feasible solution of CSC problem with small loss of
approximation.

• Finally, the two algorithms above are extended and com-
bined to be a service continuity strategy that can achieve a
good average performance, as well as a theoretical worst-
case bounded performance. Simulation results verify that
the average performance of the proposed strategy is close
to the optimal profit that is achievable for the optimal
solution.

The organization of the paper is as follows. Section II re-
views the related work. Section III formulates the problem and
provides the overview of our solutions. Section IV develops an
approximation algorithm for the situation that the number of
PMs for re-provisioning is sufficiently large. Section V studies
the general case with the limitation on the number of PMs.
Numerical results are presented in Section VI. We conclude
the paper in Section VII.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

3

II. RELATED WORK

Much research effort has been devoted in developing
energy-efficient scheduling algorithms in data centers [14]. We
just review the ones most related to the problem/technique
considered in this paper.

One of the techniques most related to the one adopted in
this paper is VM consolidation [5], [6], with which VMs
can be re-provisioned and idle PMs can be shut down to
the efficiency of energy usage. Although VM consolidation
has been studied extensively in the past, most of the studies
focus on minimizing the operational cost of a single data
center (e.g. [7]–[10]) or geo-distributed data centers (e.g.,
[11]–[13]). Rich research works focus on optimizing the data
center operation such as energy efficiency and quality of
service (QoS). [15], [16] reduce the power consumption by
reducing the number of idle servers. The works in [17],
[18] leverage energy storage devices to avoid high electricity
usage when the electricity price increases. Xu [19] proposes
an idea of using partial execution to reduce the peak power
demand and energy cost of data centers. [7], [20], [21] consider
parameterized optimization objectives to minimize the energy
cost and response time. [22] proposes to make temperature-
aware workload management for geo-distributed data centers.
[23], [24] consider geo-graphical electricity price diversity to
reduce the operation cost of data centers. More related works
can be referred to in survey papers [5], [6].

The service continuity problem studied in this paper needs
to exploit the emergency energy and provide service continuity
for a subset of VMs, that is carefully selected, to maximize
the total profit of service continuity with the support of limited
emergency energy. We note that a VM consolidation technique
can be resorted to enhance the efficiency of emergency energy
usage. However, all existing works in the literature of VM
consolidation introduced above have assumed unlimited power
supply, which can support all VMs indefinitely, and aim at
minimizing the operation cost with the support of infinite
energy supply. They cannot be applied to our scenario that
exploits the limited emergency energy and needs to design
both VM selection strategy and VM consolidation strategy
under power short age, so as to maximize the total profit of
keeping service continuity.

Prior to our work, only a few works have discussed the
problem on cloud recovery or providing service continuity.
Wood et al. [25] discuss about the possibility of providing
the disaster recovery as a service in the cloud. [26] provides a
solution to the recovery of IT services in the event of a disaster
with the help of the cloud. Develder et al. [27] and Habib et
al. [28] exploit the backup scheme to provide the resilience or
protection ability in case of link or server failure. Few prior
works have theoretically addressed the restoration scheme or
the problem on how to schedule the VMs and provide service
continuity with limited emergency energy under power outage.

In summary, we note that existing studies cannot be applied
to solve the service continuity problem under consideration. To
the best knowledge of the authors, this paper is the first work
to theoretically study the scheduling problem on providing
service continuity with maximum profit in cloud data center

under power shortage.

III. PROBLEM FORMULATION AND OVERVIEW OF OUR
SOLUTION

In this section, we formulate the cloud service continuity
problem and provide the overview of our solutions.

A. System model
Suppose the power supply outside the cloud data center is

interrupted at time 0 due to a disaster, starting from which the
only available power is the emergency energy (such as UPSs,
power generator) with limited energy, and the outside power
supply is expected to be restored at time T .

When the outside power supply is cut off, the cloud service
provider can redirect some services to other data centers that
are not affected by power outage. Since cloud services are
realized by Virtual Machines (VMs), to maintain the continuity
of a service, the VM supporting the service needs to keep
operating locally until the time point, named deadline, at which
the service is finished or the VM supporting the service is
successfully launched in the new data center and ready for
redirection. Let J = {1, 2, ..., n} be the set of VMs that is
running in the cloud data center before power outage occurs.
To facilitate the scenario and capture the fundamental chal-
lenge in maintaining service continuity under power shortage,
we measure the resource demand of the VMs by the request of
CPUs or vCPUs (virtual CPUs) since the CPU usage usually
takes up a significant share of the total power needed. Each
VM j is assumed to have a size/demand sj , requesting sj
units of CPUs or vCPUs. When power outage strikes, the VM
supporting the service needs to keep operating locally until
the minimum time point, named deadline, among the time
points at which the service is finished, the VM supporting
the service is successfully migrated to the new data center
not affected by the power outage or the normal power supply
is back. Let dj be the deadline of VM j, which specifies a
period [0, dj) of continuity requirement that is used to keep
the VM operating and maintaining the service continuity. Note
that such a continuity requirement can include both the time
required for running VMs and the time caused by migrating
the VMs (either to another PM or to the remote data center).

Thus, to satisfy its continuity requirement, VM j needs sj
units of resource (resource demand) in time interval [0, dj) for
keeping operating. Assume that it contributes a value/profit pj
if its service continuity requirement is satisfied. Here, profit pj
will be called service continuity profit of VM j and deadline
dj will be called the length of VM j. We assume naturally
that no new VM demands will be accepted during the period
[0, T] of the power outage, thus all VMs are available at time
0.

Let I = {1, 2, ...,m} be the set of physical machines (PMs)
in the cloud data center. Each PM is assumed to be identical,
each with the same capacity V of resource.

B. Problem formulation
Due to the lack of emergency energy during power outage,

not all VMs can keep operating until their deadlines of con-
tinuity requirements, thus the service continuity requirements

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

4

of some VMs may be violated. It is necessary to design both
a VM selection strategy and a VM consolidation strategy so
as to efficiently utilize the emergency energy and maximize
the total service continuity profit of the VMs for the cloud
provider.

A re-provision/consolidation strategy would consolidate the
VMs to the PMs and shut down idle machines to efficiently
utilize the energy. Define xij as an indicator to indicate if VM
j is allocated/re-provisioned to PM i. That is, xij = 1 if VM
j is executed on PM i and xij = 0 otherwise. Thus, we have

xij = {0, 1}, ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n. (1)

Due to the lack of emergency energy and the constraints of
resource capacities, some VMs have to be interrupted before
their deadlines, thus fail to keep the service continuity. That is,
it is possible that

∑
1≤i≤m xij = 0 for some VM j. In this case

we say that they fail to be allocated/consolidated. Thus, before
designing a consolidation strategy under power shortage, it
is critical to determine a VM selection strategy: determine
which set of VMs should be chosen and consolidated (with∑

1≤i≤m xij = 1).
After determining the VM selection, an efficient consolida-

tion strategy under power shortage is required to consolidate
the selected VMs by efficiently utilizing the emergency energy.
Here, each VM j is executed/consolidated on at most one PM.∑

1≤i≤m

xij ≤ 1, ∀1 ≤ j ≤ n. (2)

Eq. (1) and (2) are called the assignment constraints. The
number of PMs activated for re-provisioning/consolidation
should be at most m, which is called the PM constraint.

Because of the resource constraints of PMs, the total de-
mands of VMs consolidated on PM i must not exceed V in
total. That is, ∑

1≤j≤n

sjxij ≤ V, ∀1 ≤ i ≤ m. (3)

This is called the resource capacity constraint. We say that
VM j fits PM i if it can be allocated to PM i without exceeding
the resource capacity.

Before modeling the power constraint, we first introduce the
power consumption model adopted in this paper. Let uit ∈
[0, 1] be the CPU utilization rate of machine i at time t,

uit =
∑

j:t∈[0,dj)

sjxij/V, ∀t, ∀i. (4)

We say PM i is active at time t if uit > 0, thus it uses one
active/power-on PM time unit. As measured in prior works
[15], [16], the power consumption of a PM approximately
follows the function below,

eit =

{
(1− α)uµit + α, if uit > 0

0, if uit = 0
(5)

where µ ≥ 1 and the peak power with full CPU utilization is
normalized to be 1; the constant α is the idle power, which is
typically ranging in [0.5, 0.7] (and barely below than 0.5) as
noted in practical measurements [15], [29], [30].

We measure the migration cost as the migration time used
for migrating a VM to a new PM, since this term affects the
energy overhead of migration as well as the migration latency,
as measured in [31]. Note that instead of explicitly formulating
the migration time of a VM, we have incorporated it into the
time period [0, dj) of continuity requirement of each VM, as
introduced in the definition of continuity requirement.

We assume that there are U units of emergency energy
when power outage strikes. Equivalently, it is able to support
a PM with full CPU utilization to execute U time units after
normalization. A schedule should satisfy the power constraint
that the total power consumed should be at most U ,∑

1≤i≤m,1≤t≤T

eit ≤ U. (6)

Obviously, PM i must be powered on until all assigned VMs
finish their execution. Let ti be the length/number of power-
on time of PM i, then it should be no less than the required
running time of any VM consolidated on the current PM. We
thus have

ti ≥ djxij , ∀1 ≤ j ≤ n,∀1 ≤ i ≤ m. (7)

For VM j, if its service continuity requirement is satisfied
(with

∑
1≤i≤m xij = 1), then the cloud service provider gains

a value/profit pj from VM j; otherwise, it gains a profit 0. If
a VM is consolidated in the service continuity schedule, then
we say the schedule executes/starts the VM, interchangeably.

Our objective is to maximize the aggregated profit of VMs
whose service continuity requirement is satisfied, i.e.,

∑
1≤j≤n

pj ∑
1≤i≤m

xij

 . (8)

Therefore, the cloud service continuity problem under con-
sideration is summarized in the following definition (ILP
formulation).

Definition 1 (CSC problem). The Cloud Service Continuity
(CSC) problem is to determine the allocation {xij |i ∈ I, j ∈
J} to maximize the service continuity profit (8) with the
satisfaction of the assignment constraint (1) and (2), the
resource capacity constraint (3), the power constraint (6) and
the constraint (7) and the PM constraint.

We investigate the CSC problem from the approximation
point of view. We say that an algorithm is γ-approximation if
it always achieves a profit within 1

γ times that of the optimal
solution for any input/instance I . That is,

ALG(I)

OPT (I)
≥ 1

γ
, ∀I. (9)

where ALG(I) and OPT (I) are respectively the service
continuity profit achieved by the algorithm and the optimal
solution.

C. Overview of our solutions

In CSC problem, we need to select and re-
provision/consolidate the VMs to exploit the emergency
energy and maximize the service continuity profit of VMs

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

5

whose continuity requirements are satisfied using limited
emergency energy.

The CSC problem (even consolidating with unlimited num-
ber of PMs) can be easily proved to be NP-hard by reducing
the classical NP-hard knapsack problem to an instance of it.
Therefore, in this paper, we focus on the design of approxi-
mation algorithms.

The high level idea of the design is as follows. We observe
that the idle power α is a large constant compared with the
peak power and a PM using U active PM time units spends
at most U units of peak power (since it is normalized to be
1). Thus, algorithms that uses at most U active PM time units
guarantee to satisfy the power constraints.

We first consider the situation that the number of PMs
available for re-provisioning is sufficiently large in Section
IV. This allows us to activate a new PM if necessary. We
develop an algorithm BRP (Bundle Re-provision) to maximize
the service continuity profit of the provider. BRP ensures that
each bundle of VMs assigned to one PM is with high profit
per unit of power-on time and is proved to be 2e

(1−δ)(e−1)α -
approximation compared to the optimal solution.

Next, in Section V, we consider the general case that the
number of PMs available for re-provisioning has a limit and
develop a final algorithm, called CSC-SCHEDULE, by com-
bining two efficient algorithms introduced below to achieve a
good average performance as well as a worst-case bounded
performance.

With the restriction on the number of PMs for re-provision,
the PMs should be carefully activated to ensure that each
activated PM gains high total profit by allocating the VMs.
One intuitive idea to deal with the new constraint is to extend
BRP by greedily activating the PMs until all m PMs are used
up. This revised algorithm is called BRP∗. In general, BRP∗

has a good average performance. However, this may cause the
problem that the activated PM gains low total profit when all
chosen VMs have short lengths, although the profit per power-
on time unit is high. As a matter of fact, this may make the
worst-case performance be arbitrarily bad.

Thus, we combine BRP∗ with another algorithm, called
FRP∗ (Fractional Re-provision), which will be proved con-
stant approximation in terms of worst-case performance. In
the design of FRP∗, we first introduce a fraction version of
CSC problem with nice optimal structures and develop a novel
algorithm to find its optimal solution, and then we transform
this solution back to be a feasible solution of the original
problem with a loss of small approximation ratio. By returning
the better one between BRP∗ and FRP∗, we have the final
schedule CSC-SCHEDULE.

IV. ALGORITHM DESIGN WITH SUFFICIENT NUMBER OF
PMS

In this section, we consider CSC problem in clouds under
a natural condition that the number of PMs available for
re-provisioning is sufficiently large. Since a PM using U
active PM time units guarantees to spent at most U peak
power, we introduce a time-constrained CSC problem first
where the original power constraint is replaced by the time-
constraint that the total number of power-on time units is not

allowed to exceed U . We will devise an algorithm for the
time-constrained CSC problem, which tries to fully utilize the
CPU resource at each unit of power-on time and meanwhile
guarantees to satisfy the power constraints in the original CSC
problem. Then, we will prove that the proposed algorithm is
close to the optimal profit in time-constrained CSC problem,
which will be further proved to approach the optimal solution
with the original power constraints.

Here, a sufficient number of PMs does not mean that it
is free to activate as many as wanted, due to the lack of
emergency power. Thus, the VMs need to be carefully selected
and consolidated to PMs to gain the maximum profit.

One intuitive and promising idea is to design a greedy
algorithm that allocates the VMs in the order of decreasing
profit-per-deadline and adopts first-fit strategy to allocate the
VM to the first active PM and activate one new PM if no
active PMs are available. However, a simple example can
be easily found to show that such a greedy algorithm has
unbounded approximation ratio, since it does not take the
resource capacities of PMs and profit diversity of VMs into
consideration, which may lead to the waste of resource of a
PM as well as the waste of power or power-on time in the
long run.

Our basic idea for solving the CSC problem is to consider
a key sub-problem to guarantee the efficient usage of each
power-on time unit in activating PMs and then adopt it as
a building block to activate new PMs. The key sub-problem
under consideration is, given a budget of U units of power-on
time, maximizing the profit of VMs chosen to be executed in
one single PM.

The arrangement of this section is as follows. We first
develop a basic procedure to solve the key sub-problem above.
Then, we propose an algorithm for the CSC problem by
iteratively calling the basic procedure. Finally, we analyze the
the proposed algorithm and prove its constant approximation.

A. A basic procedure

In this subsection, given t power-on time units, we examine
the key sub-problem on how to select VMs from J to run on a
single PM with capacity V during [0, t), so that the total profit
is maximized. Define J≤t ⊆ J to be the set of VMs whose
deadlines satisfy dj ≤ t. Obviously, only VMs with deadlines
not greater than t can start on such a PM. Thus, we only need
to consider the set J≤t.

We use a basic procedure to solve the problem above. This
procedure will find a subset of VMs from a given set Ĵ
such that the total profit is maximized with the constraint
that the total resource demands of the selected VMs is at
most V . Given a set Ĵ of VMs and a capacity V , let pro-
cedure PROFITABLEBUNDLE(V, Ĵ) return the desired subset
and profit(V, Ĵ) be the maximum profit.

Note that such a sub-problem can be reduced to be the
transitional knapsack problem, thus it admits a dynamic
programming algorithm. Let p(j, v) be the maximum profit
achievable using only the first j VMs in Ĵ with a capacity v.
The profit p(j, v) is either achieved by p(j − 1, v) when the

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

6

j-th VM is not selected or by p(j − 1, v − sj) + pj when the
j-th VM is selected. Thus, the recursion function is

p(j, v) = max{p(j − 1, v),

p(j − 1, v − sj) + pj}. (10)

Based on the recursion function above, we can imple-
ment PROFITABLEBUNDLE(V, Ĵ) by computing p(|Ĵ |, V).
The time complexity is O(nV) and pseudo-polynomial due
to its dependency on value V . If needed, we can further
remove the dependency on value V of the time complexity
by introducing a pre-set small error factor δ, a value/constant
that can be arbitrarily close to 0, so as to obtain a total profit
arbitrarily close to p(|Ĵ |, V) within a factor of (1−δ) (namely,
a fully polynomial-time approximation scheme, FPTAS), using
O(n3 1

δ) running time given any error bound δ. The detailed
implementation is similar to the FPTAS for the well-known
knapsack problem [32], thus is omitted here.

To solve the key sub-problem, we only need to invoke
procedure PROFITABLEBUNDLE(V, J≤t), where J≤t is the set
of VMs whose deadlines satisfy dj ≤ t.

B. Algorithm design

Based on the solution above, we are now ready to solve
the CSC problem with sufficient number of PMs for re-
provisioning.

The idea of the design is to activate one single PM to run
a bundle of VMs (with the largest possible total profit per
unit of power-on time) first at each iteration. And then, we
iteratively activate a new PM while satisfying the power-on
time-constraints as well as the power constraints. The intuition
behind such a general idea is to efficiently utilize the resource
capacity and achieve high profit when consuming each power-
on time unit.

In detail, the first bundle of VMs is computed as follows.
With the help of algorithm PROFITABLEBUNDLE, we com-
pute the maximum profit profit(V, Ĵ≤t) given any duration
[0, t). The first bundle is the set of VMs that achieves
the maximum value profit(V,Ĵ≤t)

t among all possible integer
t ∈ [0,min{T,U}]. Then, the algorithm iteratively finds the
rest of the bundles.

The detailed design of the algorithm is presented in BRP.
Let Ak be the subset of VMs allocated in iteration k and Sk =
∪1≤i≤kAi. In iteration k, the algorithm calls the procedure
PROFITABLEBUNDLE(V, (J\Sk−1)≤t) to test every time 1 ≤
t ≤ min{T,U} to find a value t̂ = arg max

t

profit(V,(J\Sk−1)≤t)
t

and set Ak to be the VMs that achieve profit(V, (J\Sk−1)≤t̂).
It activates the k-th PM to allocate VMs in Ak and gets profit
profit(V, (J\Sk−1)≤t̂) with the cost of an amount Ek of power
consumption. The algorithm iteratively finds the next set Sk+1

and terminates either when all VMs are chosen or the total
energy consumption exceeds the capacity U after adding the
set Sk+1. Should this case occur, the algorithm returns the set
with higher profit between Sk and S̄, where S̄ is the maximum
profit achievable for one single PM with the input of VMs in
J and U time units.

In terms of the time complexity, computing Sk would call
the procedure PROFITABLEBUNDLE() at most min{T,U} ·
min{m,U} times, while computing S̄ would call the proce-
dure PROFITABLEBUNDLE() at most min{T,U} times, where
typically we have U > T and U > m when power outage
happens. Thus, the running time of BRP is O(mTnV) when
setting δ = 0.

Algorithm 1 BRP(V, J,m)
1: Set A0 = S0 = ∅
2: Set k = 1, t̂ = 0
3: while J\Sk−1 6= ∅ and U > 0 do
4: Compute t̂ = arg max

1≤t≤min{T,U}
profit(V,(J\Sk−1)≤t)

t

5: if U − t̂ > 0 then
6: Ak =PROFITABLEBUNDLE(V, (J\Sk−1)≤t̂)
7: Activate the k-th PM to run the VMs in Ak.
8: Sk = Sk−1 ∪Ak.
9: Compute the amount of power, say Ek, consumed on

on the k-th PM.
10: k = k + 1, U = U − Ek.
11: end if
12: end while
13: Compute t̄ = arg max

1≤t≤{T,U}
profit(V, J≤t)

14: Let S̄ =PROFITABLEBUNDLE(V, J≤t̄).
15: if the profit in Sk is larger than that of S̄ then
16: return the profit in Sk.
17: else
18: return the profit in S̄.
19: end if

C. Approximation ratio analysis

Now we analyze the performance of the Algorithm BRP.
Recall the definition of the time-constrained CSC problem and
denote by OPT c the subset of VMs scheduled by the optimal
solution of the time-constrained CSC problem using at most
U units of power-on time, and let p(OPT c) be the total profit
of those VMs. Denote by p(OPT) the optimal profit of the
optimal solution in the original CSC problem. We first prove
that the algorithm achieves within 2e

(1−δ)(e−1) times of the
optimal profit in time-constrained CSC problem where e is the
natural constant and δ is the constant error factor introduced
to bound the performance on the total profit.

Suppose that the algorithm finishes in p iterations and the
algorithm returns set Sp at termination. Let Ak be the VMs
returned in the k-th iteration, and p(Ak) be the total profit of
VMs in Ak, where 1 ≤ k ≤ p.

We first prepare a basic property for the greedy rule of
the algorithm. The following lemma states the fact that each
bundle of VMs selected in the iterations is profitable.

Lemma 1. p(Sk) − p(Sk−1) ≥ (1 − δ)tk · p(OPT
c\Sk−1)
U for

all 1 ≤ k ≤ p.

Proof. Let tk be the largest deadline of VMs in Ak. Let
opt(t, J) be the maximum achievable profit to run the VMs
in J by activating only one PM with t time units. For the first

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

7

iteration, assuming t′ is the value that achieves opt(t′, J) 1
t′ =

max
t
opt(t, J) 1

t , we have p(A1) 1
t1

= max
t

profit(t, V, J) 1
t =

profit(t′, V, J) 1
t′ ≥ (1−δ)opt(t′, J) 1

t′ where the last inequality
holds by the fact that PROFITABLEBUNDLE returns a subset
with at least a profit profit(t′, V, J) ≥ (1 − δ)opt(t′, J).
Moreover, opt(t′, J) 1

t′ = max
t
opt(t, J) 1

t ≥ p(OPT
c) 1
U since

opt(t′, J) 1
t′ is the maximum profit per power-on time that is

achievable, and activating any PM in the optimal solution
OPT c of time-constrained CSC problem achieves at most
the profit opt(t′, J) 1

t′ per unit time. Therefore, combining
these inequalities, we have p(A1) 1

t1
≥ (1 − δ)opt(t′, J) 1

t′ ≥
(1− δ)p(OPT c) 1

U .
Let t′ be the value that achieves opt(t′, J\Sk−1) 1

t′ =
max
t
opt(t, J\Sk−1) 1

t . Then, in later iteration k, we have

(p(Sk) − p(Sk−1)) 1
tk

= max
t

profit(t, V, J\Sk−1) 1
t =

profit(t′, V, J\Sk−1) 1
t′ ≥ (1 − δ)opt(t′, J\Sk−1) 1

t′ where
the first inequality holds because of the greedy rule
in the k-th iteration applied in the algorithm and
the last inequality is correct because the procedure
PROFITABLEBUNDLE returns a subset with at least a
profit profit(t′, V, J\Sk−1) ≥ (1 − δ)opt(t′, J\Sk−1).
Moreover, opt(t′, J\Sk−1) 1

t′ = max
t
opt(t, J\Sk−1) 1

t ≥
p(OPT c\Sk−1) 1

U , since opt(t′, J\Sk−1) 1
t′ is the maximum

profit per cost that is achievable among the VMs J\Sk−1

and activating any PM in OPT c achieves at most the profit
opt(t′, J\Sk−1) 1

t′ per unit time. Combining these inequalities,
we have (p(Sk)− p(Sk−1)) 1

tk
≥ (1− δ)opt(t′, J\Sk−1) 1

t′ ≥
(1− δ)p(OPT c, J\Sk−1) 1

U . This completes the proof.

Based on the relation between p(Sk) and p(Sk−1) in every
two adjacent iterations in Lemma 1, we can establish the
relation between p(Sk) and p(OPT c) in the following lemma.

Lemma 2. p(Sk) ≥ (1− δ)(1− Πk
i=1(1− ti

U))p(OPT c) for
all 1 ≤ k ≤ p.

Proof. Since p(A1)
t1
≥ (1− δ)(p(OPT

c)
U), it holds for the base

case k = 1, i.e., p(A1) ≥ (1 − δ) t1U p(OPT
c). We prove the

lemma by induction with the induction hypothesis p(Sk−1) ≥
(1− δ)(1−Πk−1

i=1 (1− ti
U))p(OPT c). With the hypothesis, we

have
p(Sk) ≥ p(Sk−1) + (1− δ)tk · p(OPT

c\Sk−1)
U

≥ p(Sk−1) + (1− δ) · tkU (p(OPT c)− p(Sk−1))

≥ (1− δ)(1− tk
U)p(Sk−1) + (1− δ)tk · p(OPT

c)
U

≥ (1− δ)(1− tk
U)(1−Πk−1

i=1 (1− ti
U))p(OPT c)

+(1− δ)tk · p(OPT
c)

U
= −(1− δ)Πk

i=1(1− ti
U)p(OPT c)

+(1− δ)(1− tk
U)p(OPT c) + (1− δ)tk · p(OPT

c)
U

= −(1− δ)Πk
i=1(1− ti

U)p(OPT c) + (1− δ)p(OPT c)
= (1− δ)(1−Πk

i=1(1− ti
U))p(OPT c)

where the first inequality holds by Lemma 1, the second
inequality follows by p(OPT c\Sk−1) ≥ p(OPT c)−p(Sk−1),
the fourth inequality holds by the induction hypothesis and the
last three equalities follow by merging the items.

Based on Lemma 1 and Lemma 2, we derive the worst-
case performance bound of the algorithm compared with the
optimal profit in time-constrained CSC problem.

Lemma 3. Algorithm BRP achieves within 2e
(1−δ)(e−1) times

of the optimal profit in time-constrained CSC problem with at
most U units of power-on time.

Proof. Assume that Ap+1 is the last set which makes tp+1

exceed the power-on time constraints with
∑p+1
i=1 ti ≥ U . We

have
p(Sp) + p(Ap+1)

≥ (1− δ)(1−Πp+1
i=1 (1− ti

U))p(OPT c)

≥ (1− δ)(1−Πp+1
i=1 (1− ti∑p+1

i=1 ti
))p(OPT c)

≥ (1− δ)(1− (1− 1
p+1)p+1)p(OPT c)

≥ (1− δ)(1− 1
e)p(OPT c)

where the first inequality follows by Lemma 2, the second
inequality holds by the fact

∑p+1
i=1 ti ≥ U , the last two in-

equalities hold by the fact that the minimum value of Πp+1
i=1 (1−

ti∑p+1
i=1 ti

) is achieved with t1 = t2 = ... = tp+1 and approaches
1
e with large p + 1. Accordingly, max{p(Sp), p(Ap+1)} ≥
p(Sp)+p(Ap+1)

2 ≥ (1−δ)(e−1)
2e p(OPT c). Therefore, the algo-

rithm returns max{p(Sp), p(S̄)} ≥ max{p(Sp), p(Ap+1)} ≥
(1−δ)(e−1)

2e p(OPT c), thus is within 2e
(1−δ)(e−1) times of the

optimal solution in time-constrained CSC problem with at
most U units of power-on time.

Finally, we prove the feasibility and constant approximation
of the proposed algorithm in the original CSC problem, as
concluded in the following theorem.

Theorem 1. Algorithm BRP achieves 2e
(1−δ)(e−1)α -

approximation for CSC problem, i.e. approximately within
4.5-6.4 times of the optimal solution with typical idle power
α ∈ [0.5, 0.7].

Proof. Algorithm BRP schedules the VM execution with
at most U units of power-on time, thus uses at most U
units of (peak) power. Hence, it is feasible for the original
CSC problem. Furthermore, it returns a profit that is at least
(1−δ)(e−1)

2e p(OPT c) where p(OPT c) is the optimal profit
in time-constrained CSC problem with at most U units of
power-on time. Let p(OPT ĉ) be the optimal profit of time-
constrained CSC problem with at most U

α units of power-on
time. Obviously, p(OPT c) ≥ αp(OPT ĉ) since the number of
power-on time units in p(OPT c) is α times that of p(OPT ĉ).
Moreover, it is easy to see that any feasible solution of the
original CSC problem can utilize at most U

α units of power-
on time according to the definition of idle power, thus is a
feasible solution of the time-constrained CSC problem with U

α
units of power-on time. Thus, we have p(OPT ĉ) ≥ p(OPT).
Therefore, Algorithm BRP returns a profit that is at least
(1−δ)(e−1)α

2e p(OPT) and hence is 2e
(1−δ)(e−1)α -approximation

for the original CSC problem.

V. ALGORITHM DESIGN FOR GENERAL CSC PROBLEM

In this section, we study the general case in which there
exists a limitation on the number of PMs for re-provisioning.
We try to develop a schedule by combining two algorithms
to achieve a good average performance as well as constant
approximation in terms of worst-case performance.

According to the overview of our idea described in Sec-
tion III, we can simply extend BRP to get the algorithm

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

8

BRP∗ for the general case, by iteratively activating new PMs
until no more PMs are available. In general, this algorithm
may perform well in average case, but a simple instance
can be easily found to show that it has unbounded worst-
case performance. Developing an algorithm with worst-case
bounded performance for the general case is quite difficult.
With the limit on the available PMs, packing VMs with similar
deadlines to a PM, as BRP∗ does, may just choose VMs with
short VMs and use up the PMs easily while achieving only a
low total profit on each PM.

To address this challenge, we go another way around. In-
stead of directly addressing the original problem, we introduce
a novel fractional version of the problem, called Fractional
Time-constrained CSC (FCSC) problem, which has nice struc-
tural properties and can be solved optimally. Thus, we first
develop a non-trivial algorithm to optimally solve it, and then
transform the fractional solution back to be the (integral)
solution of the original problem. Based on the optimality of
the fractional solution returned for FCSC, we will ensure that
the transformed solution would achieve a total profit close
to the fractional solution, thereby achieving a low loss in
approximation ratio.

The arrangement of this section is as follows. We first
introduce the FCSC problem. Next, we develop an optimal
algorithm for the fractional CSC problem. Then, we trans-
form the solution of the fractional CSC problem back to
be a feasible solution of the original problem and prove its
constant approximation. Last, we combine the two algorithms
developed to get the final service continuity strategy.

A. A fractional time-constrained CSC problem

In this subsection, we still define the time-constrained CSC
problem to be the CSC problem with the power constraint re-
placed by the time-constraint that the total number of power-on
time units used is at most U , and further introduce a fractional
time-constrained CSC problem (FCSC). We will prove that
the optimal solution of the fractional time-constrained CSC
problem can be computed and transformed to be a feasible
solution of the CSC problem later.

Recall that a feasible solution of time-constrained
CSC problem integrally selects the VMs and re-
provisions/consolidates them to the PMs with the satisfaction
of resource capacity constraints and power-on time constraints.
We can treat each VM as two dimensional rectangle, with
one dimension to be the size/height and the other dimension
to be the length/width. Re-provisioning the selected VMs to
a PM with capacity V is equivalent to placing the rectangles
into a large rectangle with height V .

We first define the virtual PMs before introducing the
fractional CSC problem. Take each PM as a virtual PM such
that a VM can request just a part (but not all) of its demand
from a virtual PM. Further consider that all m virtual PMs
form a large virtual PM with capacity mV . With such an
assumption, the assignment constraint is relaxed and a VM is
allowed to be allocated to two virtual PMs. For example, when
VM j is allocated to two virtual PMs 1 and 2 respectively
with demand s1

j and s2
j , then virtual PMs 1 and 2 respectively

Fig. 2. An example showing how to transform the optimal solution of time-
constrained CSC problem to be a feasible solution of FCSC problem without
using more resources or power-on time.

need to provide s1
j and s2

j units of resource (and thus keep
operating) during the period [0, dj). Thus, we assume that,
when hosting the VMs, the virtual PM needs to keep operating
until the largest deadline of the VMs allocated even if it just
serves partial resource demand of the VM. The total execution
time of the virtual PMs still should not violate the power-on
time constraints.

With the assumptions of virtual PMs above, the fractional
time-constrained CSC problem (FCSC problem) is defined as
follows. It integrally selects a set of VMs and allocates them
to the virtual PMs under both the resource capacity constraint
on virtual PMs and the time-constraint that the total number
of power-on time units used is at most U . The objective is
to maximize the profit of VMs selected and allocated. Note
that for FCSC problem, any set of VMs with total size not
exceeding mV can be placed into the virtual PMs, without
violating the resource capacity constraints since the VMs are
allowed to be allocated to two virtual PMs. However, the
power-on time-constraints on the virtual PMs may be violated.

An important property for the FCSC problem introduced
above is that its optimal solution is at least that of the time-
constrained CSC problem, thus can provide an upper bound for
the original CSC problem. Its proof also indicates the existence
of a novel algorithm for computing the optimal solution of the
FCSC problem.

To prove that the optimal profit of FCSC problem is at least
that of the time-constrained CSC problem, it is sufficient to
transform the optimal solution of the time-constrained CSC
problem to be a feasible solution of the FCSC problem. That
is, we show that all the VMs selected in the optimal solution
of time-constrained CSC problem can be allocated to virtual
PMs and get a feasible solution for FCSC problem. Assume
that Jopt is the set of VMs selected in the optimal solution of
time-constrained CSC problem. We allocate the VMs in Jopt
to the virtual PMs in the order of non-increasing length as
follows. We allocate the first VM with the largest length to
the first virtual PM, and then greedily allocate the next VM
and activate a new virtual PM only when the resources on
the current virtual PM are uses up. Fig. 2 demonstrates an
example showing the transformation.

The resulting allocation can be proved to be a feasible
solution for FCSC problem with the assumption that a VM is
allowed to be allocated to two virtual PMs, which is concluded
in the following lemma.

Lemma 4. The optimal profit for FCSC problem is at least

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

9

that of the time-constrained CSC problem.

Proof. Let Jopt be the optimal solution of CSC problem. Note
that the transformation takes Jopt as a input. The VMs in Jopt
are sorted in the order of non-increasing length and allocated
one by one to the virtual PMs. The proof is simply based
on the observation that such an allocation always activates
a new virtual PM when the resources on activated ones are
fully occupied and the new virtual PM is activated using
the minimum length of power-on time. Such a transformed
allocation is obviously a feasible solution for FCSC problem
and does not utilize more resources or power-on time than
Jopt of CSC problem. This completes the proof.

Consider the large virtual PM with mV units of resource
that is formed by all virtual PMs to serve the VMs. Take as if
each unit of the resource is taken from a space with addresses
in [1,mV]. If the unit of resource in address c ∈ [1,mV] is
allocated to VM j, we say VM j occupies address c.

The transformation rule defined for proving Lemma 4
implies the following critical property of the optimal solution
for FCSC problem, which will help us to design its optimal
algorithm. That is, it makes the activated virtual PMs, except
the last one, use up their resource. Thus, equivalently, we can
say that VMs in Jopt occupy all the addresses in [1, sopt] or
addresses in [1, sopt] are fully occupied by VMs in Jopt. In
general, there is an immediate lemma for the optimal solution
of FCSC problem following by Lemma 4.

Lemma 5. Assuming that Jfopt is the set of VMs chosen by the
optimal solution of FCSC problem, then there exists an optimal
allocation for FCSC problem where VMs in Jfopt occupy
all the addresses in [1, sfopt] with sfopt =

∑
j∈Jfopt

sj , and
moreover, a VM with larger length occupies the lower address.

B. Optimal algorithm for FCSC problem

Based on the definition of FCSC problem and its properties
introduced above, we develop a novel algorithm to optimally
solve the FCSC problem. To find the optimal solution for
FCSC problem, we still have to deal with the power-on time-
constraints and PM constraint when VMs are allocated to
virtual PMs.

The key idea is to develop a dynamic programming al-
gorithm by seeking a recursion function (or recursive sub-
problem) for FCSC problem. One possible idea, which is
intuitive but may fail, is that we can try to find the max-
imum achievable profit using the addresses in [1, c] and
find the largest one among all possible c with 1 ≤ c ≤
min{mV, ssum} to find the optimal profit. With such an intu-
ition, the method to compute the optimal profit for allocating
n VMs is to find the larger value between the profit found in
two recursive sub-problems, the maximum profit for allocating
the first n − 1 VMs in addresses [1, c] when the n-th VM
is not allocated and the maximum profit for allocating the
first n − 1 VMs in addresses [1, c − sn] when the n-th VM
is allocated. However, such an intuition fails in dealing with
the power-on time constraints when designing the recursion
function. This is because, if VM j is allocated to a virtual
PM that is not activated before allocation, then it needs dj

more power-on time; if VM j is allocated to a virtual PM
that is already activated, then it may need no more power-on
time. The problem above lies in the following fact: a recursion
function for dynamic programming function needs to compute
the function in a bottom-up manner; but when comparing these
two sub-problems, we have no information on whether the PM
before allocation is activated or not.

We note that the above intuition fails because when we
consider the allocation for the current VM, we are lacking of
the structure information for the recursive sub-problem before
allocating the current VM.

Thus, we try to make more structural information for the
problem. Note that there are multiple optimal allocations for
FCSC problem that can achieve the same optimal profit. Recall
that Lemma 5 implies that there exists an optimal solution
for FCSC problem where the selected VMs fully occupy the
addresses starting from address 1 and ending at address sfopt,
and furthermore, a VM with larger length is allocated first to
lower address.

We utilize such a key property to design the recursion
function. With such a property, we just try to find the optimal
allocation which fully occupies the addresses in [1, sfopt] but
ignore all other optimal allocations, and further resort the VMs
so that s1 ≥ s2 ≥ ... ≥ sn. Such an idea restricts our search
space, but allows us to assume that the virtual PM, whose
resources are partially used but not used up before allocating
the current VM, is already activated.

Thus, given an address space [1, c], our objective is reduced
to computing the maximum profit by selecting a subset Jc of
VMs in the first k VMs so that the total size

∑
j∈Jc,j≤k sj = c

(which implies that all the VMs in Jc fully occupy the
addresses in [1, c] and meanwhile the last selected VM is
ending at address c), and meanwhile, the virtual PMs for
allocating such VMs use at most t units of power-on time.
Let function p(k, c, t) return such a maximum profit.

The definition above helps make the recursive sub-problem
well-structured, which is able to lead to a novel recursive
function below to compute p(k, c, t). A tricky part of the proof
for deriving this recursion function is how to identify the case
that the addresses in [1, c] are not possible to be fully occupied
by integrally selecting from the first k VMs.

Lemma 6. The recursion function to compute p(k, c, t) is as
follows,

p(k, c, t) =

max

p(k − 1, c, t)
p(k − 1, c− sk, t),

if c− sk > V · (d c
V
e − 1)

p(k − 1, c− sk, t− dk),
if 0 ≤ c− sk ≤ V · (d c

V
e − 1)

0, if c = 0 and t ≥ 0
−∞, if j = 0 and c > 0
−∞, if c− sk < 0
−∞, if t < dk

(11)

Proof. Recall the definition of p(k, c, t). If p(k, c, t) is the op-
timal profit of FCSC problem, then this implies that c = sjopt
and the chosen VMs fully occupy the addresses in [1, c] and
the lower address is occupied by the VM with larger length.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

10

According to the definition of the recursion function, if
p(k, c, t) is the optimal solution, then this implies that c = sopt
and all addresses in [1, c− sk] are occupied before allocating
VM k. Thus, we can simply assume that all addresses in
[1, c−sk] are already occupied and the first d c−skV e virtual PMs
that contribute at least one resource in addresses [1, c− sk] is
already activated.

With such a structural information, we know VM k should
occupy addresses in [c − sk + 1, c] that is belonging to the
d cV e-th virtual PM. If d cV e − d

c−sk
V e = 0 or equivalently c−

sk > V · (d cV e− 1), then the d cV e-th virtual PM already hosts
at least one VM among the first k − 1 VMs. This implies
that it is already activated for execution with larger than dk
time units before allocating VM k. Thus, no more power-
on time need to be used to activate the d cV e-th virtual PM
when allocating VM k. If d cV e−d

c−sk
V e = 1, then the d cV e-th

virtual PM does not host any VM before allocating VM k and
dk more units of power-on time should be used to activate it.
Consequently, when VM k is selected, we can set p(k, c, t) =
p(k−1, c−sk, t)+pk if c−sk > V ·(d cV e−1) and p(k, c, t) =
p(k− 1, c− sk, t− dk) + pk if 0 ≤ c− sk ≤ V · (d cV e− 1). If
VM k is not selected, then we have p(k, c, t) = p(k− 1, c, t).
Obviously, we need to set p(·, 0, t) = 0 if c = 0 and t ≥ 0 for
the initialization. The analysis above has specified the main
idea of the recursion function, which relies on the assumption
that the address in [1, c] are fully occupied.

However, one more critical issue has not been addressed,
which is also a tricky part in the design. Since the dynamic
programming algorithm needs to compute a general p(k, c, t)
in a bottom-up manner, we need to tackle the case that
the addresses [1, c] are not possible to be fully occupied by
selecting from the first k VMs.

To identify this situation, we set p(k, c, t) = −∞ when
using the first k VMs is impossible to fully utilize the resources
in [1, c]. Thus, we need to identify the condition with which
p(k, c, t) is set to be −∞. In general, the last selected VM will
occupied the address c according to the definition of p(k, c, t).
We discuss all possible cases of the recursion function. If t <
dk, then this implies any VM among the first k VMs has a
length larger than t, thus it is impossible to fully utilize the
addresses in [1, c] when c 6= 0 and hence p(k, c, t) = −∞. If
c−sk < 0 then k should not be allocated and p(k, c, t) = p(k−
1, c, t). If j = 0 and c > 0, then obviously p(k, c, t) = −∞.
This completes the proof in deriving the recursive function.

Recall that we want to find the optimal allocation that the
selected VMs fully occupy the addresses in [1, c]. Accordingly,
the defined function p(k, c, t) returns a positive value only
when the addresses in [1, c] are fully occupied by the selected
VMs.

Finally, to find the optimal profit for FCSC problem,
denoted by OPT (FCSC), we need to enumerate c ∈
[1,min{mV, ssum}] to find exactly the value c = sfopt. Thus,
the optimal profit for FCSC problem can be computed by,

OPT (FCSC) = max1≤c≤min{mV,ssum}p(n, c, U). (12)

Algorithm 2 FRACTIONALCSC(J, U,m)
1: for c = 1 to min{mV, ssum} do
2: Set p(0, ·, ·) = −∞.
3: Set p(·, 0, t) = 0 for all t ≥ 0.
4: for k = 1 to n do
5: for cc′ = 1 to c do
6: for t = 1 to U do
7: if t < dk or cc′ < 0 then
8: p(k, cc′, t) = −∞
9: else

10: temp1 = p(k − 1, cc′, t)
11: if cc′ − sk > V · (d cc

′

V e − 1) then
12: temp2 = p(k − 1, cc′ − sk, t) + pk
13: else if 0 ≤ cc′ − sk ≤ V · (d cc

′

V e − 1) then
14: temp2 = p(k − 1, cc′ − sk, t− dk) + pk
15: else
16: p(k, cc′, t) = −∞
17: end if
18: p(k, cc′, t) = max{temp1, temp2, temp3}
19: end if
20: end for
21: end for
22: end for
23: retP = max{p(n, c, U)}
24: Find the set of selected VMs S in the recursion function

with a backward search.
25: end for
26: return (retP, S)

More details can be found in Algorithm FRACTIONALCSC
which implements the dynamic programming method stated
above. The following theorem concludes the optimality of
FRACTIONALCSC.

Theorem 2. Algorithm FRACTIONALCSC optimally solves
FCSC problem in O(m2nUV 2) steps.

Proof. The optimality of FRACTIONALCSC follows directly
from the recursion function we derived.

To calculate the recursion function p(k, c, t), we need to
enumerate n possible values of the first parameter, at most mV
values of the second parameter and U possible values of the
last one. In the final step, to find the value max{p(n, c, U)},
another mV possible values should be enumerated. Therefore,
the time complexity is O(m2nUV 2).

C. Transforming from fractional solution to integral solution

Now we transform the optimal solution of FCSC problem to
be a feasible solution of the CSC problem without losing much
performance. Recall that in FCSC problem, it allows the VMs
to be divisible when they are assigned to PMs. Therefore, we
need to transform the fractional solution to be the (integral)
solution of CSC problem.

The main difficulty lies in the fact that the transformation
may result in the utilization of more than m PMs and more
than U units of power-on time. The transformation idea is
based on the fact that the optimal allocation for FCSC problem

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

11

fully occupies the addresses in [1, sfopt], as stated in Lemma
4, which can be used to control the usage in the number of
PMs that is needed for transformation.

Thus, we use m PMs and U units of power-on time to
recover the fraction solutions that uses bm2 c PMs and bU2 c
power-on time. For the ease of discussion, we only discuss
the case that U

2 ,
m
2 are integers since the flooring operation

does not affect the constant approximation of the algorithm.
Let OPT (FCSC, J, U2 ,

m
2) be the optimal solution of

FCSC problem with the input of U
2 power-on time and m

2
PMs. According to Lemma 5, all VMs fractionally assigned
to PMs in OPT (FCSC, J, U2 ,

m
2) are allocated to at most two

PMs. Thus, we can assign the PMs in OPT (FCSC, J, U2 ,
m
2)

one by one in the order of non-increasing length and activate
at most twice of the PMs to integrally assign all these VMs.
More details can be found in Algorithm FRP∗.

In terms of the time complexity of Algorithm FRP∗,
computing the optimal solution OPT (FCSC, J, U2 ,

m
2) would

cost O(m2nUV 2) time when calling Algorithm FRACTION-
ALCSC, while allocating the VMs chosen by FRACTION-
ALCSC would cost at most O(nm) time. Thus, the running
time of Algorithm FRP∗ is O(m2nUV 2). Fig. 3 demonstrates
an exemplary solution returned by Algorithm FRP∗.

According to Lemma 4, the algorithm for FCSC problem
finds the optimal allocation that fully occupies addresses in
[1, sfopt] and a VM with larger length occupies lower address.
Thus, activating twice the number of PMs and power-on
time used in FRACTIONALCSC(J, U2 ,

m
2) is enough to get an

integral solution, which satisfies the PM constraints and power-
on time constraints in the time-constrained CSC problem.
Hence, it further satisfies the power constraint of the original
CSC problem since using U units of power-on time implies
that the total power used is at most U units of (peak) power.
Therefore, the algorithm outputs a feasible solution for CSC
problem.

Algorithm 3 FRP∗(V, J,m)

1: (p, S)= FRACTIONALCSC(J, U2 ,
m
2)

2: sort VMs in S by their length in a non-decreasing order
3: for each ĵ in S do
4: if VM ĵ is fractionally selected then
5: let VM j be the VM with full demand corresponding

to ĵ.
6: else
7: j = ĵ
8: end if
9: if VM j can be put into the current PM then

10: put VM j into the current PM
11: else
12: activate a new PM and put VM j into the new PM
13: end if
14: profit = profit + pj
15: end for
16: return profit

Based on the the discussion above, we further prove the
constant approximation of Algorithm FRP∗ by applying the
upper bound established in Lemma 4.

Theorem 3. Algorithm FRP∗ is 4
α -approximation for CSC

problem, i.e. approximately within 5.7-8 times of the optimal
solution with typical idle power α ∈ [0.5, 0.7].

Proof. The profit achieved in Algorithm FRP∗ is no less
than that of OPT (FCSC, J, U2 ,

m
2) since all VMs se-

lected in OPT (FCSC, J, U2 ,
m
2) are executed. That is,

FRP∗(J, U,m) ≥ OPT (FCSC, J, U2 ,
m
2). Obviously, we

have OPT (FCSC, J, U2 ,
m
2) ≥ 1

4OPT (FCSC, J, U,m) be-
cause the input VMs are the same and the input parame-
ters are scaled by a factor of 2. Moreover, assuming that
OPT (CSCc, J, U,m) is the optimal solution of the time-
constrained CSC problem, then OPT (FCSC, J, U,m) ≥
OPT (CSCc, J, U,m) according to Lemma 4. Therefore, it
is true that FRP∗(J, U,m) ≥ OPT (FCSC, J, U2 ,

m
2) ≥

1
4OPT (FCSC, J, U,m) ≥ 1

4OPT (CSCc, J, U,m). Let
OPT (CSC) be the optimal profit of CSC problem. Ap-
plying similar proof in Theorem 1, we can further de-
rive that OPT (CSCc, J, U,m) ≥ αOPT (CSC). Thus,
FRP∗(J, U,m) ≥ α

4OPT (CSC) and FRP∗ is 4
α -

approximation.

D. Combining the results

As what is shown above, Algorithm FRP∗ has a constant
bound in terms of worst-case performance. In order to further
enhance its practical significance, we combine it with BRP∗

that has a good average performance in general, so as to
achieve both good average performance and theoretically
worst-case bounded performance. The method is to simply run
these two algorithms once and return the one that achieves
higher profit. Algorithm CSC-SCHEDULE presents the final
algorithm.

Algorithm 4 CSC-SCHEDULE(V, J,m)
1: profit1 = BRP∗(V, J,m)
2: profit2 = FRP∗(V, J,m)
3: return max{profit1, profit2}

Obviously, CSC-SCHEDULE has the same constant approx-
imation ratio as FRP∗, thus its worst-case performance is well-
bounded.

VI. SIMULATION RESULTS

The theoretical analysis has verified the worst-case perfor-
mance bounds of the algorithm proposed in this paper. In this
section, we perform simulations for the algorithm to further
validate its average performances over the achievable profit.

No prior works have addressed the service continuity prob-
lem studied in this paper, thus we compare our algorithm with
the natural greedy schedule mentioned in Section IV. Further-
more, we compare the performance of our algorithm with the
optimal solution. Since computing the optimal solution for
the CSC problem is NP-hard, we compare the performance
of CSC-SCHEDULE with the upper bound of the optimal
solution, denoted as OPT UB, which is obtained by relaxing
the ILP formulation to be LP formulation with xij ∈ [0, 1].
Since no real-trace has provided a dataset similar to that of

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

12

(a) (b) (c)

Fig. 3. An example showing the results returned by Algorithm FRP∗ where U is set with U = 2(d3+d6) and the profit of each VM/rectangle is equal to the
size of its area. (a) All VMs sorted by length, as the input of the dynamical programming algorithm FRACTIONALCSC. (b) A solution returned by Algorithm
FRACTIONALCSC(J, U

2
, m

2
) using U

2
units of power-on time and m

2
PMs, which is the optimal solution of the fractional time-constrained CSC problem,

OPT (FCSC, J, U
2
, m

2
). (c) Solution returned by FRP∗(V, J,m), which is a feasible solution of CSC problem transformed from OPT (FCSC, J, U

2
, m

2
)

using at most U units of power-on time and m PMs.

Fig. 4. (a) Profit achieved when the number of VMs varies. (b) Amount of
energy consumed when the number of VMs varies.

Fig. 5. (a) Profit achieved when the number of PMs varies. (b) Amount of
energy consumed when the number of PMs varies.

the continuity maintenance problem with VM requirements
considered in this paper, we consider random input of VMs
in our simulations.

In the simulation, we set the power-restored time T =
100(min). We assume that there are m = 100 homogeneous
PMs, each with 32 CPU cores. Each PM with full utilization
would consume one (normalized) unit of energy per minute.
We set the power budget to be U = 5000. The deadline of each
VM is assumed to be a random number in [1, T]. The demand
of each VM (number of CPU cores requested) is assumed to
be an integer randomly ranging in [1, 32]. The profit of the
VMs is uniformly generated from [1, 100]. The parameters of
the power consumption function are set with α = 0.5, µ = 1.

1) Impact of the number of VMs: Fig. 4(a) shows the
change in the profit achieved by different schedules when the
number of VMs increases in the range of [50, 500] with a step
of 20. The curves are generated by increasing the number of
VMs, where each point on the curves of the results is generated
in a single run. Generally, the profit of the algorithms increases
with the number of VMs. The profit achieved by our algorithm
CSC-SCHEDULE is much higher (up to 25%) than the greedy
schedule does. Moreover, we can see from the figure that the
profit achieved approaches that of OPT UB (within 80%), thus
is even closer to the optimal solution.

Fig. 4(b) illustrates the amount of power used by different
schedules when the number of VMs varies. At the beginning,
the power used by CSC-SCHEDULE (and Greedy) increases
with the rise of the number of VMs and then reaches the limit
U = 5000 with n ≥ 150, where U becomes the bottleneck,
while OPT UB almost always uses up the energy since it can
produce fractional (but maybe infeasible) solutions. We can
see from Figure 4(a) and 4(b) that the profit achieved by the
three schedules are nearly the same before the available power
becomes the bottleneck, and after that, the profit achieved
differs much for the three schedules.

2) Impact of the number of PMs: Fig. 5(a) shows the profit
achieved by the three schedules when the number of PMs
varies. In this scenario, the number of PMs m ∈ [10, 200], the
number of VMs n = 500, and the amount of power-on time
U = 5000. The profit obtained by CSC-SCHEDULE is about

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

13

BRP∗ FRP∗ CSC-SCHEDULE Greedy
O(mnV T) O(m2nV 2U) O(mnV ·max{T,mV U}) O(n ·max{logn,m})

TABLE I
TIME COMPLEXITIES OF THE ALGORITHMS

20%-40% higher than that of the greedy schedule. Moreover,
it achieves a profit close to (within 75%) that of OPT UB, thus
even approaches that of the optimal solution. The profit of the
algorithms increases with the number of PMs and becomes
stable when m ≥ 110.

Fig. 5(b) shows the amount of power consumed by different
schedules when the number of PMs varies. The trends of lines
in this figure are similar. The amount of power used increases
when m ≤ 100 and becomes stable after that because all
schedules almost use up the energy. We can see from Fig.
5(a) and 5(b) that the profit achieved by CSC-SCHEDULE
and Greedy becomes stable when the available power is used
up.

The simulations above have demonstrated the good aver-
age performance on maximizing the profit of our proposed
algorithm. In Table I, we further compare the time complexity
of the algorithms. Although the greedy algorithm runs fastest
(with O(n · max{log n,m}) time) due to its greedy nature,
it achieves 25% less profit in providing service continuity
than CSC-SCHEDULE does, as demonstrated in the simulation
results above. The running time of CSC-SCHEDULE depends
on the maximum one between BRP∗ and FRP∗. Algorithm
BRP∗ runs in O(mnV T) time, while Algorithm FRP∗ runs
in O(m2nV 2U) time. In our simulation, we found that around
98% of the solutions returned by Algorithm BRP∗ have higher
profit that of FRP∗. Thus, in practice, we can just return the
solution of BRP∗ as the final solution of CSC-SCHEDULE to
significantly reduce its running time to be O(mnV T) without
losing much profit.

Combining with the theoretical bound derived for the worst-
case performance, these together verify the efficiency of our
proposed algorithm.

VII. FUTURE WORKS AND CONCLUDING REMARKS

In this paper, we introduce and theoretically study the
scheduling problem to maintain cloud service continuity with
maximum profit under power shortage. We develop efficient
scheduling algorithms with theoretical guarantees/small ap-
proximation ratios to maximize the profit of VMs of which
the service continuity requirements are satisfied.

This work has conducted a theoretical study on how to
provide service continuity under power outage. Our theoretical
study can shed some light on the service continuity strategy
design under power shortage. In our preliminary study, we
focus on the resource of CPUs and vCPUs considering that
the CPU usage takes up significant share of power needed. In
future works, it is worth extending the study to the case with
multiple types of resources. Although the basic algorithmic
idea introduced in this paper can be extended to be adaptive
to the multi-resource scenario, however, it is quite challenging
to develop algorithms with theoretical performance guarantee
since there exist multiple capacity constraints with respect to

the multiple types of resources. Thus, we would like to leave
it as an open problem and study it in future work.

REFERENCES

[1] Q. P. S. Team, “Average cost of data center outages: $627,418 per
incident,” in http://www.qpsolutions.net/2015/03/average-cost-of-data-
center-outages-627418-per-incident/. Quality Power Solutions Ltd,
March 18, 2015.

[2] Data center knowledge, in http://www.datacenterknowledge.com/
archives/category/manage/uptime/ . Penton Ltd, website.

[3] G. Smith, “Amazon power outage exposes risks of cloud
computing,” http://www.huffingtonpost.com/2012/07/02/
amazon-power-outage-cloud-computing n 1642700.html, 2012.

[4] Y. Qu, G. Yang, and X. Liu, “Aliyun data center in hk suffers 14-
hour disruption,” http://english.caixin.com/2015-06-24/100822037.html,
2015.

[5] S.-Y. Jing, S. Ali, K. She, and Y. Zhong, “State-of-the-art research study
for green cloud computing,” The Journal of Supercomputing, vol. 65,
no. 1, pp. 445–468, 2013.

[6] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: a survey, state of the
art, and future directions,” Proceedings of the IEEE, vol. 102, no. 1, pp.
11–31, 2014.

[7] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” TON, vol. 21, no. 5, pp.
1378–1391, 2013.

[8] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance,
and reliability tradeoffs for energy-aware server provisioning,” in IN-
FOCOM’11, 2011, pp. 1332–1340.

[9] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “Enacloud: An
energy-saving application live placement approach for cloud computing
environments,” in CLOUD ’09, 2009, pp. 17–24.

[10] M. A. Adnan, R. Sugihara, and R. K. Gupta, “Energy efficient geo-
graphical load balancing via dynamic deferral of workload,” in Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on.
IEEE, 2012, pp. 188–195.

[11] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in ACM SIGCOMM
computer communication review, vol. 39, no. 4, 2009, pp. 123–134.

[12] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah,
and C. Hyser, “Renewable and cooling aware workload management for
sustainable data centers,” in ACM SIGMETRICS Performance Evalua-
tion Review, vol. 40, no. 1, 2012, pp. 175–186.

[13] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for energy
and fairness in geographically distributed data centers,” in ICDCS’12,
2012, pp. 22–31.

[14] S.-Y. Jing, S. Ali, K. She, and Y. Zhong, “State-of-the-art research study
for green cloud computing,” The Journal of Supercomputing, vol. 65,
no. 1, pp. 445–468, 2013.

[15] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in ACM Sigplan Notices, vol. 44, no. 3, 2009, pp.
205–216.

[16] C.-C. Lin, P. Liu, and J.-J. Wu, “Energy-efficient virtual machine
provision algorithms for cloud systems,” in UCC’11, 2011, pp. 81–88.

[17] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam,
“Optimal power cost management using stored energy in data centers,”
in SIGMETRICS, 2011.

[18] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. K.
Fathy, “Energy storage in datacenters: What, where and how much?”
in SIGMETRICS, 2012.

[19] H. Xu and B. Li, “Reducing electricity demand charge for data centers
with partial execution,” in international conference on Future energy
systems, 2014.

[20] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Greening
geographical load balancing,” in SIGMETRICS11, 2011, pp. 233–244.

[21] H. Lim, A. Kansal, and J. Liu, “Power budgeting for virtualized data
centers,” in USENIX ATC11, 2011, p. 59.

1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2728795, IEEE
Transactions on Services Computing

14

[22] H. Xu, C. Feng, and B. Li, “Temperature aware workload management
in geo-distributed datacenters,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 41, no. 1, pp. 373–374, 2013.

[23] Z. Xu and W. Liang, “Minimizing the operational cost of data centers
via geographical electricity price diversity,” in Cloud Computing, 2013.

[24] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in ACM SIGCOMM
computer communication review, vol. 39, no. 4. ACM, 2009, pp. 123–
134.

[25] T. Wood, E. Cecchet, K. Ramakrishnan, P. Shenoy, J. Van Der Merwe,
and A. Venkataramani, “Disaster recovery as a cloud service: Economic
benefits & deployment challenges,” in 2nd USENIX workshop on hot
topics in cloud computing, 2010, pp. 1–7.

[26] M. Klems, S. Tai, L. Shwartz, and G. Grabarnik, “Automating the
delivery of it service continuity management through cloud service
orchestration,” in Network Operations and Management Symposium
(NOMS), 2010 IEEE, 2010, pp. 65–72.

[27] C. Develder, J. Buysse, B. Dhoedt, and B. Jaumard, “Joint dimensioning
of server and network infrastructure for resilient optical grids/clouds,”
IEEE/ACM Transactions on Networking (TON), vol. 22, no. 5, pp. 1591–
1606, 2014.

[28] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukher-
jee, “A disaster-resilient multi-content optical datacenter network archi-
tecture,” in Transparent Optical Networks (ICTON), 2011 13th Interna-
tional Conference on. IEEE, 2011, pp. 1–4.

[29] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services.” in NSDI, vol. 8, 2008, pp. 337–350.

[30] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architecture
News, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[31] W. Dargie, “Estimation of the cost of vm migration,” in 2014 23rd
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2014, pp. 1–8.

[32] E. L. Lawler, “Fast approximation algorithms for knapsack problems,”
Mathematics of Operations Research, vol. 4, no. 4, pp. 339–356, 1979.

Weiwei Wu is an associate professor in Southeast
University, P.R. China. He received his BSc degree
in South China University of Technology and the
PhD degree from City University of Hong Kong
(CityU, Dept. of Computer Science) and University
of Science and Technology of China (USTC) in
2011, and went to Nanyang Technological Uni-
versity (NTU, Mathematical Division, Singapore)
for post-doctorial research in 2012. His research
interests include optimizations and algorithm analy-
sis, wireless communications, crowdsourcing, cloud

computing, reinforcement learning, game theory and network economics.

Jianping Wang is an associate professor in the
Department of Computer Science at City University
of Hong Kong. She received the B.S. and the M.S.
degrees in computer science from Nankai University,
Tianjin, China in 1996 and 1999, respectively, and
the Ph.D. degree in computer science from the
University of Texas at Dallas in 2003. Jianping’s
research interests include dependable networking,
optical networks, cloud computing, service oriented
networking and data center networks.

Kejie Lu received the BSc and MSc degrees in
Telecommunications Engineering from Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 1994 and 1997, respectively. He received
the PhD degree in Electrical Engineering from the
University of Texas at Dallas in 2003. In 2004 and
2005, he was a Postdoctoral Research Associate
in the Department of Electrical and Computer En-
gineering, University of Florida. In July 2005, he
joined the Department of Electrical and Computer
Engineering, University of Puerto Rico at Mayaguez,

where he is currently an Associate Professor. His research interests include
architecture and protocols design for computer and communication networks,
performance analysis, network security, and wireless communications

Wen Qi received his B.E. degree from the Depart-
ment of Automation, Nankai University in 2009, and
the M.S. degree in computer science from the City
University of Hong Kong in 2013, and Ph.D degree
in 2016 in the Department of Computer Science,
City University of Hong Kong. His research interests
include cloud computing, networking, and security.

Feng Shan received his Ph.D. degree in Computer
Science from Southeast University, China in 2015.
He is currently an Assistant Professor at School of
Computer Science and Engineering, Southeast Uni-
versity. He was a Visiting Scholar at the School of
Computing and Engineering, University of Missouri-
Kansas City, Kansas City, MO, USA, from 2010 to
2012. His research interests are in the areas of energy
harvesting, wireless power transfer, algorithm design
and analysis.

Junzhou Luo received the BS degree in applied
mathematics and the MS and PhD degrees in com-
puter network, all from Southeast University, China,
in 1982, 1992, and 2000, respectively. He is a full
professor in the School of Computer Science and
Engineering, Southeast University, Nanjing, China.
He is a member of the IEEE Computer Society
and co-chair of IEEE SMC Technical Committee on
Computer Supported Cooperative Work in Design,
and he is a member of the ACM and chair of
ACM SIGCOMM China. His research interests are

next generation network architecture, network security, cloud computing, and
wireless LAN.

