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Abstract— In a participatory sensing system, data sensed from
smartphone users are shared with the general public who
requests data through submitting tasks. When multiple tasks
request the data from a mobile user, the mobile user can make a
transmission schedule to achieve the balance between the amount
of data transmitted and energy consumption. Intuitively, reducing
the amount of data transmitted by making use of data sharing
between the tasks can save the energy consumption. However,
due to the convexity of rate-power function for rate-adaptive
transmitting devices, a schedule purely minimizing the amount of
data transmitted may not always be the optimal one minimizing
the energy consumption. Thus, there exists a tradeoff between the
amount of data transmitted and energy consumption. This paper
formulates the problem as a bi-objective optimization problem
to simultaneously minimize the amount of data transmitted
and the energy consumption. Two task models are studied,
first-in-first-out (FIFO) task model and arbitrary deadline (AD)
task model, respectively. We first provide optimal algorithms for
the off-line case. We then study the online case where requests
arrive dynamically without prior information. For FIFO tasks,
we develop an online algorithm that is O(ln L)-competitive with
respect to both the amount of data transmitted and energy
consumption, where L is the longest length of the time duration
of the tasks. For AD tasks, we devise an online algorithm that
is O(ln2 L)-competitive with respect to both the amount of data
transmitted and energy consumption. Our simulation results
validate the efficiency of our online algorithms.

Index Terms— Rate scheduling, energy efficiency, participatory
sensing, data sharing, competitive analysis.
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Fig. 1. The architecture of a participatory sensing system.

I. INTRODUCTION

PARTICIPATORY sensing with smartphones has become
a compelling paradigm with the proliferation of smart-

phones, in which data collected is shared with the general
public [1], [2]. A participatory sensing system consists of
a platform as the coordinator, a group of mobile users as
data providers, and the general public as data requesters.
Fig. 1 shows the architecture of a participatory sensing system.
The general public submits multiple data sensing tasks to the
platform, then the platform allocates the tasks to mobile users,
and the mobile users transmit the sensed data to the platform.
One important feature of the system is data sharing among
tasks, where some data from a mobile user can be shared by
multiple tasks on the platform, as long as the data meets the
time-sensitive QoS constraint.

To reduce the total amount of data transmitted, a mobile
user can make a transmission schedule to enable more data
sharing among tasks. Such a problem has been studied
by [3], [4]. In this paper we further the research by considering
the total energy consumption used by transmission, another
important concern to mobile users. The relationship between
the total data traffic and total energy consumption is not
as straightforward as one may assume. Although in general
less data traffic through shared data transmission implies less
energy consumed, it is not always true because sometimes too
much shared data needs a high transmission rate, which may
consume more energy. This happens because the rate-power
function p = G(s) (which specifies the power p consumed to
achieve a desired rate s) is convex in nature for rate-adaptive
devices [5]–[7].

We now use an example shown in Fig. 2 to illustrate
the conflict between data traffic minimization and energy
minimization. Fig. 2(a) gives a schedule with the input of
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Fig. 2. Trade-off between the data traffic and energy consumption.

one task, J1, requesting an amount w of data within the
interval [1, 2l]. In such a case, transmitting data with a
constant rate w

2l during the time interval of [1, 2l] will lead to
the minimum energy consumption. However, when there are
two tasks with the possibility for data sharing, the schedule to
minimize the total data traffic will not lead to the minimum
energy consumption. Suppose that there is another task J2,
requesting an amount w of data within time interval [l +1, 3l].
We can see that,

• To minimize the total data traffic, the schedule in (b)
transmits all data (with a total amount w) in the overlap
of the two time intervals to make it shared by the two
tasks. Under such a schedule, the total amount of energy
consumption is l · G(w

l ).
• To minimize the total energy consumption, the schedule

in (c) decreases the traffic in the mid area to be w−x and
increases the traffic in the low-rate areas to be x where the
variant x is a positive real number to be discussed later,
resulting in a total amount w − x + 2x = w + x > w
of data traffic and an amount 2l · G( x

l ) + l · G(w−x
l ) of

energy consumption.
In contrast to the intuition that decreasing the data traffic

can reduce the energy consumption, we can observe from
(b) and (c) in Fig. 2 that, transmitting more data traffic
may cause less energy consumption. This leads to a need
to design new transmission policies to address the trade-off
between the data traffic and energy consumption. Although
there may not exist a schedule minimizing the data traffic
and energy consumption simultaneously, as shown later, we
can always find a schedule of which both data traffic and
energy consumption can approach the minimum data traffic
and the minimum energy consumption within a good bound,
respectively.

To address the trade-off above, this paper formulates the
problem as a bi-objective optimization problem to reduce both
the data traffic and energy consumption. To model the delay
constraints, we consider the following two models, FIFO task
model and AD task model. The former typically models the
FIFO schedulers with first-in-first-out service rule that earlier
arrived tasks have earlier deadlines [8], [9]; while the latter
generalizes the setting in the former to tasks with arbitrary
deadlines.

To model the tasks requiring data transmission, we consider
both offline setting and online setting. In the offline setting,
all information is known in advance, i.e. the arrivals and
departures of tasks. In the online setting, we assume arbitrary
task arrivals and departures to model the general online setup
of rate scheduling, which can provide a worst-case guarantee.

We measure the performance of online algorithms in terms
of the bi-objectives with the paradigm of competitive
analysis [10], which guarantees that the output (both data
traffic and energy consumption) of an online algorithm always
approximates the optimal offline solution within a bounded
factor for all possible inputs.

Developing online scheduling algorithms with proven good
performance bounds for both FIFO task model and AD task
model is quite challenging. First, the optimal schedule that
minimizes the data traffic may not always be the optimal one
that minimizes the energy consumption. Second, the optimal
solution for minimizing the energy consumption has complex
structures and does not admit a combinatorial algorithm due
to irregular intersections/sharing of the intervals of the tasks
(which can be seen from the example above that the value x
can be an irrational number correlated with the rates of other
tasks). To the best of our knowledge, no online algorithms
with competitiveness for minimizing the energy consumption
(even regardless of the data sharing and data traffic) are known
in the literature of rate scheduling.

In this paper, we propose optimal algorithms for the offline
setting and develop online algorithms with proven worst-case
performance bounds with respect to bi-objectives. Since the
structure of the optimal solution is too complicated to be
characterized, it is almost impossible to directly bound the
performance. To this end, we propose two online decomposi-
tion methods that are able to partition the tasks into subsets
with well-characterized properties (e.g. disjoint property,
bi-monotonicity) respectively for FIFO tasks and AD tasks,
and accordingly devise novel algorithms/analysis to tackle the
partitioned tasks, thus indirectly bound the competitiveness of
the online algorithm running on the original tasks by merging
the performance bounds.

Our contributions are summarized as follows.
• This paper investigates an energy-efficient transmission

problem with data sharing in participatory sensing sys-
tems in which a trade-off between data traffic and energy
consumption is discovered. We theoretically address such
a trade-off in terms of bi-objective optimization.

• For the offline case, we provide optimal algorithms with
respect to bi-objectives. For common deadline tasks, an
iteration-based algorithm is proved optimal to simulta-
neously minimize the data traffic and the energy con-
sumption. For general tasks with individual deadlines,
we provide a method to compute the optimal solutions
respectively minimizing the data traffic and the energy
consumption

• For online FIFO tasks, we develop an online algorithm
that achieves O(ln L)-competitiveness with respect to
both of the bi-objectives, i.e., the overall data traffic and
the overall energy consumption always approximate the
offline optimal solution within a factor of O(ln L).

• For online AD tasks, we develop an online algorithm that
achieves O(ln2 L)-competitiveness with respect to both
of the bi-objectives.

The remains of this paper are organized as follows.
Section II reviews the related work. In Section III, we formu-
late the model and introduce the energy-efficient transmission
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problem with bi-objectives. In Section IV, we provide the
optimal algorithms for the offline case. In Section V, we
study FIFO task model and develop an online algorithm with
proven O(ln L)-competitiveness. Different from our prelim-
inary work [11], the competitive ratio derived removes its
dependency on the total number T of time slots that is usually
large, and moreover, we further investigate the generalized
AD task model by developing an O(ln2 L)-competitive algo-
rithm in Section VI. Section VII performs the simulations for
our online algorithms and validates their efficiency. Finally,
we conclude the paper in Section VIII.

II. RELATED WORK

Extensive research work has been done respectively in the
field of participatory sensing and rate scheduling. We only
review the most related ones due to space limit.

A. Participatory Sensing

Recently, with its attractive applications, participatory sens-
ing has attracted extensive research attention, both from
industry and academia. Various issues in participatory sensing
have been addressed in the literature [1], [2], [12], [13].
For example, [14]–[16] use social-media-based crowdsourc-
ing to build knowledge base of urban emergency events;
References [18] and [19] consider the privacy preserving
problem in participatory sensing; References [20] and [21]
study the incentive mechanism design problem in incentivizing
truthfulness and users’ participation; Reference [17] considers
location-aware collaborative sensing in mobile crowdsourc-
ing. The task allocation issues in crowdsourcing markets are
investigated in [22] and [23], without concerning about data
sharing, however. The data sharing problem within multiple
applications is initially formulated in the field of wireless
sensing systems, in which Tavakoli et al. [3] and Fang et al. [4]
consider constant-rate schedules and develop algorithms to
minimize the communication overhead. Observing the data
sharing nature, Zhao et al. [24] extend their work to study the
sensing task allocation problem in participatory sensing system
with the aim of load balancing over multiple participants.

B. Energy-Efficient Rate-Adaptive Scheduling

Much research effort has been made to design rate-adaptive
transmission algorithms (without considering data sharing).
Various objectives (e.g., throughput, delay, energy consump-
tion) are investigated in prior works which can be referred to
in a recent survey [25]. References [9], [26], and [27] devise
the optimal rate schedule to minimize the energy consumption
in the offline setting, respectively with the input of common
deadline tasks and FIFO tasks. Gatzianas et al. [27] investigate
the system utility maximization problem from a stochastic
aspect. References [28]–[31] are the first works to theoretically
study the algorithms in the general online setup, without
relying on any prior information. Among them, Vaze [28]
develop online algorithms to minimize the completion time;
References [29]–[31] propose online algorithms with compet-
itive ratios to maximize the data throughput. In the literature,

no online rate scheduling algorithms with competitive ratios
are known for minimizing the energy consumption.

To the best of our knowledge, no prior works considered
the rate-adaptive transmission policies with data sharing in
participatory sensing systems. This paper addresses such a
problem and we notice that there is a surprising conflict
between the data traffic and energy consumption in such a
rate-adaptive scenario, which is in contrast to the constant-rate
scenario [4], [24] where data traffic minimization is consistent
with the energy minimization, thus we attempt to balance such
a trade-off by developing online algorithms with performance
bounds in terms of bi-objectives.

III. PRELIMINARIES

In this section, we first introduce the system model, and
then present the problem formulation.

A. System Model

We model a QoS-constrained request in a participatory
sensing system as a task with an arrival time and a deadline,
specifying the timeliness of the data request. The time is
partitioned into discrete time slots, 1, 2, . . . , T , and we use
time interval [t1, t2] to refer to time slots t1, t1 + 1, . . . , t2.
Thus the length of the interval is t2 − t1 + 1 time slots. A task
Ji , i = 1, . . . , n, can be defined by (ri , di , wi ), where ri is
the arrival time, di is the deadline, and wi is the amount of
data requested. To be specific, task Ji can receive data from
the beginning of time slot ri to the end of time slot di . For
simplification, we just say task Ji arrives at ri and departures
at di . The amount of transmitted data in interval [ri , di ] should
be at least wi , which is called the delay/time constraint.
All tasks form the input task set J = {J1, J2, . . . , Jn}. Let
L = max1≤i≤n di − ri + 1 be the longest length of the time
duration of the tasks.

Without loss of generality, we assume mini ri = 1 and
maxi di = T . For each task Ji = (ri , di , wi ), we say that
task Ji remains alive at t ∈ [ri , di ]. Also, ri (di ) is called an
arrival (deadline) time/point, and consequently, from time 1
to T , there are 2n such points. The time interval between two
adjacent points is called a block/epoch.

In this paper, we consider two task models, FIFO task model
and AD task model. The FIFO models the first-in-first-out
service rule where tasks have deadlines in the same order as
the arrival times, which is the most general task model studied
in the literature of rate scheduling [8], [9]. The AD task model
further generalizes FIFO to tasks with Arbitrary Deadlines to
model the most general QoS requirement.

We consider a single user point-to-point transmission chan-
nel and make the same assumption as previous works that
the transmitter can adaptively change its transmission rate s,
which is related to transmission power p through a function
p = G(s) called rate-power function. In many systems with
realistic encoding/decoding schemes, the rate-power function
is convex in nature [6], [9], such as the optimal random
coding in single-user additive White Gaussian Noise (AWGN)
channel, where s = G−1(p) = 1

2 log(1 + p
N ) and N is the

thermal noise level and often assumed N = 1, and inversely
p = G(s) = e2 ln 2·s − 1.
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TABLE I

KEY NOTATIONS

In this paper, instead of investigating a specific rate-
power function, we target at the general rate-power function
p = G(s) = eαs − 1 with constant α > 0. To simplify the
presentation, we write p = G(s) = es − 1 for short when
α does not affect the final performance bound in our deduction.
Table I summarizes the key notations for the ease of reference.

B. Problem Formulation

We introduce an energy-efficient transmission problem
where a transmitter needs to transmit its data, shared by
multiple tasks, to the platform with the minimum data traffic
and energy consumption. A schedule adapts its rate at the
beginning of a time slot (or equivalently at the end of the
proceeding time slot). A scheduling algorithm A generates
a rate schedule/allocation that specifies the data rate s(t) to
transmit at time t . The sensed data can be shared by multiple
tasks as long as it fits in the time intervals of the tasks.
A feasible schedule must fulfill the data requirement of all
tasks within their delay constraints. That it,

∑

ri ≤t≤di

s(t) ≥ wi , ∀Ji . (1)

Note that the data transmitted with rate s(t) in time slot t can
be shared by (or equivalently used to meet the requirement of)
any task Ji alive at time t ∈ [ri , di ].

The data traffic incurred by an algorithm A, denoted
as W (A), is the total amount of data transmitted,

W (A) =
∑

1≤t≤T

s(t). (2)

The corresponding energy consumption is denoted as E(A)
where

E(A) =
∑

1≤t≤T

G(s(t)). (3)

In this paper, we consider a bi-objective energy-efficient
scheduling problem to minimize both the overall data traffic
W (A) and the overall energy consumption E(A), as defined
below.

Definition 1: The bi-objective energy-efficient rate schedul-
ing problem is to determine the rate s(t) over time so as to
minimize both the data traffic (2) and energy consumption
(3) with the satisfaction of all the delay constraints (1),
respectively in the offline setting and online setting.

Such a definition seems inconsistent to our previous obser-
vation because there is a conflict between these two objectives.
Interestingly, we will show that it is possible to achieve the
simultaneous minimization of both objectives for tasks with
a common deadline in the offline problem. Moreover, for the
online problem, we can have a schedule that has bounded
competitive ratio simultaneously on both objectives.

In the offline setting, full task information is known. In the
online setting, task arrives over time without prior information.
An online algorithm needs to decide the scheduling strategy
on the arrival of the tasks, without relying on any distribution
or future information. We adopt the paradigm of competitive
analysis, which is widely used to measure the worst-case
performance of online algorithms, where an online algorithm
ALG is compared with the optimal offline algorithm O PT
with full information (as benchmark).

We measure the online algorithm in terms of bi-objectives,
the data traffic and the energy consumption. To simplify the
presentation, we abuse the notation and use O PT (or sopt ) to
represent these optimal solutions (or optimal rate functions),
without distinguishing between the one minimizing the data
traffic and the one minimizing the energy consumption, if no
ambiguity arises. An online algorithm is said γ -data λ-energy
competitive if it always outputs an online schedule respectively
within γ times and λ times of the optimal offline solutions with
respect to the overall data traffic and energy consumption for
any input σ (which is a set of tasks to be served in this paper).
That is,

W (ALG(σ ))

W (O PT (σ ))
≤ γ, ∀σ (4)

and
E(ALG(σ ))

E(O PT (σ ))
≤ λ, ∀σ (5)

where W (ALG(σ )), W (O PT (σ )) are the total data traffic in
the online algorithm and the optimal offline algorithm respec-
tively for a given input σ , and E(ALG(σ )), E(O PT (σ ))
are respectively the total energy consumption in the online
algorithm and the optimal offline algorithm respectively for a
given input σ .

Thus, this paper aims at designing both offline algorithms
and online algorithms with proven performance bounds with
respect to the bi-objectives to minimize the data traffic and the
energy consumption.

IV. OPTIMAL OFFLINE RATE SCHEDULE

In this section, we study the optimal rate scheduling
algorithms.

Our major result here is that, due to the sharing nature of
data and the convexity of the rate-power function, the energy
consumption can be reduced by properly transmitting with
more workload, instead of intuitively transmitting with less
workload. Furthermore, the optimal solution for minimizing
the energy consumption has a surprisingly complex structure.
This can be shown by a simple instance with two tasks as
follows.

Example 1: Consider J = {J1, J2}, where J1 = (1, 2, 2) and
J2 = (2, 3, 2). Obviously, the optimal schedule for minimizing
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the data traffic is to transmit at rate s1 = 0, s2 = 2, s3 = 0
respectively at time t = 1, 2, 3 (transmitting with an amount
w = 2 of data traffic in total and an amount e2 − 1 of
power consumption). Since these two tasks have the same
average rate w(J1) = w(J2) = 1 and lower rate consumes
less energy, one promising schedule for minimizing the energy
consumption is to schedule task J1 with rate s1 = 1, s2 = 1
at time t = 1, 2, and moreover, let task J2 share the rate
at time 2 and finally finish its remaining workload with rate
s3 = 1 at time 3. Compared with the first schedule, the
second schedule does reduce the energy consumption (with
an amount 3(e − 1) consumed) by increasing the total data
transmission (transmitting with an amount w − x + 2x =
2 − 1 + 2 of data traffic in total) in the low-rate areas,
instead of intuitively transmitting less data traffic. Surprisingly,
further careful calculation will give the result that the rate
s2 = 1 + ln

√
2, s1 = s3 = 1 − ln

√
2 (transmitting with a total

amount w + x = 2 + (1 − ln
√

2) of data traffic) is actually
the optimal solution for minimizing the energy consumption
(minimizing e2−s2 +es2 +e2−s2 −3 under the delay constraints
of s1 + s2 ≥ 2 and s2 + s3 ≥ 2).

Motivated by the above observation, We first focus on com-
mon deadline tasks (with di = T for all 1 ≤ i ≤ n) and show
that an iteration-based algorithm can simultaneously achieve
the minimum data traffic and minimum energy consumption.
Then, we will provide optimal algorithms respectively to
minimize the data traffic and the energy consumption for
general tasks with arbitrary deadlines.

A. Optimal Schedule for Common Deadline Tasks

In this section, we develop an algorithm that is able to
simultaneously minimize the energy consumption and data
traffic. Due to the convexity of the rate-power function, an
energy-efficient schedule prefers to assign a low rate, instead
of a high rate, to complete the workload. This can be seen
from the following example. Suppose that a schedule transmits
with rates s(t) and s(t +1) in two consecutive time slots t and
t + 1, say s(t) > s(t + 1). Then, we can decrease the power
consumption by averaging these two rates to be s(t)+s(t+1)

2
since G(s(t))+G(s(t+1)) ≥ 2G( s(t)+s(t+1)

2 ) by the convexity.
This is called the equalization method [26]. However, we
should apply the equalization method carefully, because the
delay constraints of the tasks may be violated during the
equalization. The following lemma can be proved easily by
applying the equalization method with the proof moved to
Appendix A.

Lemma 1: The rate function in the optimal solution is a
step function that changes its rate either at an arrival time
or at a deadline point. If the optimal solution increases its
rate at time t, then t is an arrival time. If the optimal
solution decreases its rate at time t, then t is a deadline
point.

Let the rate function in the optimal solution for minimizing
the energy consumption be sopt . Define the average rate of a
task Ji to be w(Ji ) = wi

di−ri +1 . Assume that Jm is the task that
achieves the largest average rate w(Jm) = max1≤i≤n

wi
T −ri +1 .

The following lemma finds the interval with the largest rate

Algorithm 1 Interval-Delete
1: find the task Jm that achieves the largest average rate

w(Jm) = max1≤i≤n
wi

T −ri +1 .
2: transmit with rate w(Jm) in interval [rm , T ].
3: while there are some intervals that have not been fixed do
4: delete interval [rm, T ] and update the deadline of each

task Ji with ri < rm to be rm − 1 and the remaining
workload to be wi − |Ii ∩ Im | · w(Jm).

5: find the task Jk among the tasks {Ji : ri < rm} that
achieves the largest average remaining rate w(Jk) =
max{maxi:ri <rm

wi −|Ii ∩Im |·w(Jm)
rm−ri

, 0}.
6: transmit with rate w(Jk) in interval [rk, rm − 1].
7: set m = k.
8: end while

in sopt , which is proved by equalizing the rate inside interval
[rm, T ] to the rate outside that interval.

Lemma 2: For common deadline tasks, if Jm is the task that
achieves the largest average rate w(Jm) = max1≤i≤n

wi
T −ri +1 ,

then the optimal solution minimizing the energy consumption
has rate sopt (t) = w(Jm) in interval [rm, T ].

Proof: Let r = w(Jm) = max1≤i≤n
wi

T −ri +1 . Since Jm

achieves the largest average rate w(Jm) among all possible
intervals [ri , T ], allocating by averaging wm over interval
[rm, T ] will accomplish all tasks with ri ≥ rm . This ensures
that transmitting at rate r in interval [ri , T ] is feasible for tasks
with ri ≥ rm . Moreover, with amount wm of data to be finished
in that interval, transmitting at the constant rate r minimizes
the energy consumption by the convexity of the rate-power
function. The total amount of data transmitted in that interval
clearly cannot be less than wm .

To show that transmitting at rate r in interval [rm, T ] is
optimal, we still have to prove that the total data finished
in that interval will not exceed wm . This can be shown by
contradiction. If amount E +ε of data is transmitted in interval
[rm, T ] in the optimal solution, then this part of data will be
averaged and transmitted in that interval with rate wm+ε

T −rm+1 to
minimize the energy consumption. We then prove that there
exists at least one time slot t < rm at which the optimal
rate sopt(t) ≤ r . This is true since if on the contrary the
rate sopt (t) > r for all t < rm , then this would contradict
the fact that [rm, T ] achieves the largest average rate among
all possible intervals [ri , T ]. Thus, we assume sopt (t) < r
at time t < rm . Then, we can apply equalization to time slot
rm and t . This would reduce the energy consumption and leads
to a contradiction to the optimality.

Therefore, the rate in interval [rm , T ] is exactly r .
Consequently, the optimal solution has rate w(Jm) in inter-

val Im = [rm, T ]. For any task Ji with ri < rm that intersects
with Im , it has a remaining workload max{wi −|Ii ∩Im |·w(Jm)

|(Ii ∪Im )\(Ii∩Im )| , 0}
to be finished in [ri , rm − 1]. Observing this, we develop an
algorithm INTERVAL-DELETE (Algorithm 1). It finds the inter-
val with the largest average rate in sopt , updates the workload
of the task to be the remaining workload, and then iteratively
finds all the intervals in sopt . Its optimality with respect to the
bi-objectives is stated in the following theorem, of which
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the detailed proof is presented in Appendix A. Note that the
rate function returned in Algorithm INTERVAL-DELETE, and
correspondingly in the optimal solution, is non-decreasing for
common deadline tasks.

Theorem 1: For common deadline tasks, Algorithm
INTERVAL-DELETE computes the optimal rate schedule that
simultaneously achieves the minimum energy consumption
and the minimum data traffic.

B. Optimal Schedule for Tasks With Arbitrary Deadlines

According to the iteration-based method proposed above,
one may naturally expect to extend the method to compute
the optimal solution for general tasks. However, observing
Example 1, we note that the properties of the optimal solution
are quite different with the input of general tasks. First, the
solution minimizing the energy consumption may not always
minimize the data traffic. Second, the optimal rate function
may not be non-decreasing. Third, the calculation process
to minimize the energy consumption in that example further
reminds us that it does not allow us to compute the optimal
solution by a combinatorial or iteration-based method.

Instead, we note that the energy minimization problem
can be formulated by a convex programming with a pseudo-
polynomial number of constraints as follows.

PCP : min
T∑

t=1

G(s(t)) (6)

subject to
∑

ri ≤t≤di

s(t) ≥ wi , 1 ≤ i ≤ n (7)

s(t) ≥ 0, 1 ≤ t ≤ T (8)

Note that the properties stated in Lemma 1 hold for the
optimal solutions (with respect to both the one minimizing the
energy consumption and the one minimizing the data traffic):
the rate schedule in the optimal solution is a step function
that changes rate either at an arrival point or at a deadline
point. To remove the pseudo-polynomial number of constraints
introduced by the variant s(t) over time t , we partition the time
axis according to these time points as follows. Assume that
the arrival points and deadlines of all tasks are resorted with
an increasing order and denoted as t1 ≤ t2 ≤ ... ≤ t2n . The
interval between every two adjacent points tk, tk+1 is written
as I (k) and called an epoch. The length of epoch I (k) is
denoted by Tk . According to the property of the step function
in Lemma 1, the optimal solution keeps the rate constant
in each epoch and we denote the optimal rate in the epoch
between tk and tk+1 to be sk . The total number of the rate
variants associated with the epochs is at most 2n.

We thus obtain the following convex programming formu-
lation with 3n constraints, which can be solved in polynomial
time and lead to the optimal solution minimizing the energy
consumption.

CP : min
2n∑

k=1

TkG(sk) (9)

subject to
∑

I (k)⊆[ri ,di ]
Tksk ≥ wi , 1 ≤ i ≤ n (10)

sk ≥ 0, 1 ≤ k ≤ 2n (11)

As shown in Example 1, the optimal solution with the
minimum energy consumption may not always be the optimal
one minimizing the data traffic. We thus separately propose
the following linear programming,

LPR : min
2n∑

k=1

Tksk (12)

subject to
∑

I (k)⊆[ri ,di ]
Tksk ≥ wi , 1 ≤ i ≤ n (13)

sk ≥ 0, 1 ≤ k ≤ 2n (14)

Similar deduction can show that the solution to LPR mini-
mizes the data traffic. We summarize the results above in the
following theorem.

Theorem 2: The solution to convex programming (CP) min-
imizes the energy consumption. The solution to linear pro-
gramming (LPR) minimizes the data traffic.

V. ONLINE RATE SCHEDULE FOR FIFO TASKS

In this section, we investigate FIFO task model and propose
an online algorithm to simultaneously minimize the data traffic
and energy consumption with bounded competitive ratios.

In fact, to directly bound the performance of an algorithm
on all tasks is almost impossible due to the complex structure
of the optimal solution. Instead, we propose a decomposition
method which partitions the tasks in the optimal solution into
several disjoint sets. Such a decomposition method would
bring us nice structural properties (e.g. disjoint property and
bi-monotonicity to be defined later) of the optimal solution
for the disjoint sets and help us bound the competitiveness of
our algorithm running on the partitioned tasks. By merging
performance on the partitioned tasks, we indirectly derive the
competitiveness between our online algorithm and the optimal
solution with the input of the original tasks.

The arrangement of this section is as follows. First, we
present the FIFO-decomposition method and examine the
structural property of the partitioned tasks after decomposition.
Then, we develop an online algorithm for the partitioned
tasks. Next, we prove the performance bound for the algo-
rithm running on the partitioned tasks. Finally, we merge the
results and develop a rate schedule that achieves O(ln L)-data
O(ln L)-energy competitiveness.

A. FIFO-Decomposition for FIFO Tasks

We first develop an online decomposition method for FIFO
tasks, called FIFO-decomposition, so that we can focus on the
tasks in the partitioned group for which the optimal solution
has good structures.

The FIFO-decomposition works as follows. We mark the
earliest deadline of the tasks to be tmark

1 = d1. All tasks alive at
time tmark

1 will be placed into set S1 = {Ji : tmark
1 ∈ [ri , di ]}.

Then, for the remaining tasks that arrive after tmark
1 , we mark

the earliest deadline di to be tmark
2 = di , and let all tasks

alive at time tmark
2 form set S2. Iteratively, we can obtain a

set Sq formed by the tasks that arrive after tmark
q−1 and remain

alive at time tmark
q , which is the earliest deadline of tasks that

arrive after tmark
q−1 . Assuming that we obtain Q sets in total
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Fig. 3. Online FIFO-decomposition method, where the delay constraint (time
interval) of each task is represented as a solid line.

after decomposition, we regroup the sets with odd index to be
odd group Sodd = ∪k S2k−1 and the sets with even index to
be even group Seven = ∪k S2k . Obviously, Sodd ∪ Seven = J .
Note that, such a decomposition method can be performed in
an online manner. Fig. 3 gives an example showing the online
decomposition process.

We examine what properties are implied by the
FIFO-decomposition proposed above. Given a set S of
tasks, let I (S) = {[minJi∈S ri , maxJi∈S di ]} be the interval of
that set.

The FIFO-decomposition leads to the following structural
properties.

• (Disjoint Property) for every two sets in the same group,
say Sq , Sq ′ ∈ Sodd with q �= q ′, their intervals are
disjoint, i.e., I (Sq ) ∩ I (Sq ′ ) = ∅.

• (Pairwise Intersecting Property) all tasks in the same
set, say Sq , are alive at the same marking time, tmark

q .
• (Bi-group Property) there are only two groups after

decomposition, Sodd and Seven .
The first property can be verified as follows. Consider two

tasks Ju, Jv that are chosen from two sets Sq , Sq+2. Assume
task Jk in set Sq+1 arrives after tmark

q and has deadline dk =
tmark
q+1 . Task Ju arrives by time tmark

q with ru ≤ tmark
q < rk ,

thus du ≤ dk = tmark
q+1 due to the fact that the deadlines of the

tasks follow the order as tasks arrive. Combining with the fact
rv > tmark

q+1 , we have du < rv and hence the intervals of Ju, Jv

are disjoint. Thus, the intervals of any two sets Sq , Sq ′ with
q �= q ′ in the same group are disjoint.

The second property and the third one are obviously true
according to the decomposition process. We call the tasks in
the same set, say Sq , pairwise intersecting tasks.

Besides the structural properties above, more signifi-
cantly, we note that a critical optimal property holds for
the partitioned pairwise intersecting tasks, which is called
bi-monotonicity and crucial to the design of the online algo-
rithm. Given a rate schedule function, we define peak inter-
val to be an interval [ta, tb] such that the rate function is
constant in that interval and satisfies s(ta − 1) < s(ta)
and s(tb) > s(tb + 1). Fig. 4 shows an example for pair-
wise intersecting tasks and its bi-monotonicity is defined as
below.

Lemma 3 (Bi-Monotonicity of Pairwise Intersecting Tasks):
For pairwise intersecting tasks S, the optimal rate function
(both for minimizing the energy consumption and the data
traffic) has at most one peak interval, say [ta, tb]. That is, the
rate function is monotonically non-decreasing from the earliest

Fig. 4. An example for pairwise intersecting tasks and the bi-monotonicity.

time mini∈S ri to tb and then monotonically non-increasing till
maxi∈S di .

Proof: Suppose on the contrary that there are at least two
peak intervals in the optimal solution. We show that this would
lead to a contradiction to the property of pairwise intersecting
tasks. Assume that [ta, tb], [tc, td ] are two peak intervals in the
optimal solution. Since the optimal solution increases the rate
at time ta, tc and decreases the rate at tb, it can be seen that
ta and tc are arrival times and tb is a deadline point according
to Lemma 1. Note that ta < tb < tc. This implies that at least
one task has arrival time at tc which is larger than the other
task’s deadline at tb . This contradicts the fact that all tasks are
pairwise intersecting.

B. Online Algorithm for Pairwise Intersecting Tasks

Now we develop an algorithm MAX-REMAIN-ONLINE

(Algorithm 2) for pairwise intersecting tasks. The idea of the
algorithm is to divide the tasks available at time t into two sets
and update the transmission rate according to the comparison
of the rates of the tasks in these two sets. The algorithm divides
the tasks available at time t into two sets: the tasks that arrive
at t , {Ji : ri = t}, and the tasks that arrive before, {Ji : ri <
t ≤ di }. For any task Ji that arrives at time t , it computes the
average rate μi = wi

di−ri +1 . The algorithm sets rate function
s(1) = max

ri =1
μi at the beginning. For any task that arrives

before time t and remains available at time t , it computes

the remaining rate γi (t) = wi−∑
ri ≤t ′≤t s(t ′)

di−t+1 . The algorithm
then transmits at rate s(t) = max{max

i:ri =t
μi , max

i:ri <t≤di
γi (t)} with

energy G(s(t)) at time t .
According to the strategy of the algorithm, we can see

that the algorithm can increase the rate only at a time t , at
which a newly arriving task has a larger average rate than
the remaining rate of any task that remains alive at that time
and arrives before that time. Should this case occur, we have
s(t) = max

i:ri =t
μi > max

i:ri <t≤di
γi (t).

We show an example to illustrate the running process of the
algorithm.

Example 2: Set J = {J1, J2, J3} and J1 = (1, 3, 6),
J2 = (2, 3, 5), J3 = (2, 4, 6). At time t = 1, the algorithm
transmits with rate μ1 = 2 on the arrival of task J1. At time
t = 2, tasks J2 and J3 arrive, thus the rate is changed to be
max{μ2, μ3, γ1(t)} = μ2 = 2.5. At time t = 3, no task arrives
and the algorithm chooses a rate max{γ1(t), γ2(t), γ3(t)} =
γ2(t) = 2.5. At time 4, only task J3 is alive and the algorithm
decreases its rate to be γ3(t) = 6−5

1 = 1.
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Algorithm 2 Max-Remain-Online

1: at the beginning time t = 1, set initially μi = wi
di−1+1 for

any task Ji that arrives at time 1 and set the rate s(1) =
max
i:ri =1

μi

2: for the arrival of time t do
3: for each task Ji that arrives at t do
4: compute the average rate μi = wi

di−ri +1 for task Ji

5: end for
6: for each task Ji with ri < t ≤ di do

7: compute the remaining rate γi (t) = wi −∑
ri ≤t ′<t s(t ′)

di−t+1 for
task Ji

8: end for
9: transmit at rate s(t) = max{max

i:ri =t
μi , max

i:ri <t≤di
γi (t)} with

energy G(s(t)) at time t
10: end for

C. Performance of the Algorithm Running
on Pairwise Intersecting Tasks

Based on the bi-monotonicity, we start to study the perfor-
mance of our online algorithm running on partitioned pairwise
intersecting tasks.

We define the following notations for analyzing the algo-
rithm. Let S be the set of partitioned pairwise intersecting
tasks, and sopt be the rate function of the optimal solution
which follows the bi-monotonicity. Without loss of generality,
we assume that τ0 = tmin = mini∈S ri and τm+u = tmax =
maxi∈S di . Let [ta, tb] be the peak interval in sopt , thus sopt is
an increasing step function in [tmin , τm = tb] and a decreasing
step function in [ta, tmax ]. Assume that sopt increases the rate
at time τ1, τ2, . . . , τm−1 = ta and decreases the rate at τm =
tb, τm+1, . . . , τm+u . Fig. 4 shows an example of the notations.
Write W (A, [a, b]) and E(A, [a, b]) to be the total amount
of data transmitted and energy consumed by schedule A in
interval [a, b]. Denote by ALG and O PT respectively the
schedule in the proposed algorithm and the optimal solution.
The following two lemmas respectively bound the data traffic
and energy consumption of our online algorithm with the input
of pairwise intersecting tasks.

Lemma 4: For the input of pairwise intersecting tasks S, in
Algorithm MAX-REMAIN-ONLINE, the total amount of data
transmitted in interval [τ0, τm+u ] is at most 2 ln(τm+u −τ0+1)
W (O PT, [τ0, τm+u ]).

Proof: Assume that tasks in set S is pairwise intersect-
ing, thus the optimal solution follows bi-monotonicity. Let
s1, s2, . . . , sm respectively be the increasing rates in sopt in
interval [τ0, τm ]. Let sm+1, sm+2, . . . , sm+u respectively be the
decreasing rates in sopt in interval [τm, tmax ]. Note that for
any time t at which sopt increases, which is also called the
increasing point, it must be an arrival time of some task
(symmetrically, for any time t at which sopt increases, it must
be a deadline of some task).

We focus on the interval [τ0, τm ] first and bound the
total amount W (ALG, [τ0, τm ]) of data transmitted in that
interval. Note that the algorithm transmits with rate s(t) =
max{max

i:ri =t
μi , max

i:ri <t≤di
γi (t)} at each time point. Therefore, it

either increases the rate when a task with large average rate
is released and or decreases the rate to be a remaining rate.
Accordingly, we say the algorithm increases the rate to be
the average rate of task Jv(p) or decreases the rate to be
the remaining rate of task Jv(p). Without loss of generality,
we assume that the algorithm sets the rate to be s(tv(p)) at
time tv(p) to execute Jv(p), where 0 ≤ p ≤ s, τ0 ≤ tv(p) ≤
τm + 1, tv(0) = τ0, tv(s) = τm + 1 and tv(0) ≤ tv(1) ≤ ... ≤ tv(s).
Obviously, s(tv(p)) ≤ wv(p)

dv(p)−rv(p)+1 .

The total amount of data transmitted in interval
[τ0, τm ] is W (ALG, [τ0, τm]) = ∑

0≤p≤s−1 s(tv(p))(tv(p+1) −
tv(p)) ≤ ∑

0≤p≤s−1
wv(p)

dv(p)−rv(p)+1 (tv(p+1) − tv(p)) where

s(tv(p))(tv(p+1) − tv(p)) is the amount of data transmitted in
interval [tv(p), tv(p+1) − 1].

Note that the rate of the algorithm in interval
[tv(p), tv(p+1) − 1] is bounded by

wv(p)

dv(p)−rv(p)+1 which is

at most
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 since the optimal solution must
complete at least a workload wv(p) in that interval to satisfy
the feasibility. We will discuss by considering the following
two kinds of tasks, tasks with dv(p) ≤ τm and tasks with
dv(p) > τm .

Consider first the tasks with dv(p) ≤ τm . By the fact that sopt

is non-decreasing in [rv(p), τm], we have
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 ≤
W (O PT ,[rv(p),τm ])

τm−rv(p)+1 . As a result,

s(tv(p)) (tv(p+1) − tv(p))

≤ wv(p)

dv(p)−rv(p)+1 (tv(p+1) − tv(p))

≤ W (O PT ,[rv(p),τm ])
τm−rv(p)+1 (tv(p+1) − tv(p))

≤ ∑
tv(p)≤t≤rt (p+1)−1

(W (O PT ,[rv(p),τm ])
τm−t+1

≤ ∫ tv(p+1)−1
tv(p)

(
W (O PT ,[rv(p),τm ])

τm−t+1 )dt
≤ (ln(τm − tv(p) + 1) − ln(τm − tv(p+1) +

1))W (O PT, [rv(p), τm ])
The third inequality holds since

W (O PT ,[rv(p),τm ])
τm−rv(p)+1 ≤

(W (O PT ,[rv(p),τm ])
τm−t+1 with rv(p) ≤ tv(p) ≤ t . The second last one

is correct since
∫ tv(p+1)−1

tv(p)

1
τm−t+1 dt ≤ ln(τm − tv(p) + 1) −

ln(τm − tv(p+1) + 1).
Now consider tasks with dv(p) > τm . We have

wv(p)

dv(p)−rv(p)+1 ≤ W (O PT ,[rv(p),dv(p)])
dv(p)−rv(p)+1 ≤ W (O PT )

dv(p)−rv(p)+1 . Thus,

s(tv(p)) (tv(p+1) − tv(p))

≤ wv(p)

T −rv(p)+1 (tv(p+1) − tv(p))

≤ W (O PT )
dv(p)−rv(p)+1 (tv(p+1) − tv(p))

≤ ∑
tv(p)≤t≤tv(p+1)−1

W (O PT )
dv(p)−t+1

≤ (ln(dv(p) − tv(p) + 1)− ln(dv(p) − tv(p+1) + 1))W (O PT )
≤ (ln(τm − tv(p) + 1) − ln(τm − tv(p+1) + 1))W (O PT ).
The second last inequality holds because ln(dv(p) − tv(p) +

1) − ln(dv(p) − tv(p+1) + 1) ≤ ln(τm − tv(p) + 1) − ln(τm −
tv(p+1) + 1) when dv(p) > τm .

Therefore, for both cases, we have obtained that
s(tv(p))(tv(p+1) − tv(p)) ≤ (ln(τm − tv(p) + 1) − ln(τm −
tv(p+1) + 1))W (O PT ). Summing up all the amount of data
transmitted by Algorithm MAX-REMAIN-ONLINE in interval
[τ0, τm ], we have W (ALG, [τ0, τm ]) = ∑

0≤p≤s−1 s(tv(p))
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(tv(p+1) − tv(p)) ≤ ∑
0≤p≤s−1(ln(τm − tv(p) + 1) − ln(τm −

tv(p+1) + 1))W (O PT ) ≤ (ln(τm − tv(0) + 1) − ln(τm − tv(s) +
1))W (O PT ) = (ln(τm − τ0 + 1))W (O PT ).

For the remaining interval [τm, τm+u], we can
symmetrically derive that W (ALG, [τm−1, τm+u ]) ≤
(ln(τm+u − τm−1 + 1))W (O PT ) = (ln(τm+u −
τm−1 + 1))W (O PT, [τ0, τm+u]) based on the same fact
s(tv(p)) ≤ wv(p)

dv(p)−rv(p)+1 . Combining the results, we have

W (ALG) ≤ W (ALG, [τ0, τm+u ]) + W (ALG, [τ0, τm+u ]) ≤
2(ln(τm+u − τ0 + 1)W (O PT, [τ0, τm+u ]).

Lemma 5: For the input of pairwise intersecting tasks S,
in Algorithm MAX-REMAIN-ONLINE, the energy consumed
in interval [τ0, τm+u ] is at most 2 ln(τm+u − τ0 + 1)
E(O PT, [τ0, τm+u ]).

Proof: Comparing with the analysis on the total transmit-
ted data in Lemma 4, we should be more careful to derive
the performance bound on the energy consumption, since the
lower bound of the optimal solution should be carefully cho-
sen. Let s1, s2, . . . , sm respectively be the increasing rates in
sopt in interval [τ0, τm]. Let sm+1, sm+2, . . . , sm+u respectively
be the decreasing rates in sopt in interval [τm, tmax ].

We examine interval [τ0, τm ] and bound the energy con-
sumption E(ALG, [τ0, τm ]) in that interval first.

We first focus on sub-interval [τk−1, τk −1] with 1 ≤ k ≤ m
where the optimal solution has rate sk . To bound the perfor-
mance in interval [τk−1, τk −1], we assume that the algorithm
changes the rate at time tv(p) to speed s(tv(p)) to execute Jv(p),
where 0 ≤ p ≤ s, τk−1 ≤ tv(p) ≤ τk, tv(0) = τk−1, tv(s) = τk

and tv(0) ≤ tv(1) ≤ ... ≤ tv(s). Similar to the proof in Lemma 4,
we have s(tv(p)) ≤ wv(p)

dv(p)−rv(p)+1 .
The total amount of energy consumed in interval [τk−1, τk −

1] is E(ALG, [τk−1, τk − 1]) = ∑
0≤p≤s−1(e

s(tv(p)) −
1)(tv(p+1) − tv(p)) ≤ ∑

0≤p≤s−1(e
wv(p)

dv(p)−rv(p)+1 − 1)(tv(p+1) −
tv(p)). Note that

wv(p)

dv(p)−rv(p)+1 is at most
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1
since the optimal solution must complete at least a workload
wv(p) in that interval to satisfy the feasibility. We will discuss
by considering the following two kinds of tasks, tasks with
dv(p) ≤ τm and tasks with dv(p) > τm .

Consider first the tasks with dv(p) ≤ τm . By the fact that sopt

is non-decreasing in [rv(p), τm ], we have
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 ≤
W (O PT ,[rv(p),τm ])

τm−rv(p)+1 . Let Xk be the amount of data in the area that
is covered by sopt but above rate sk in the optimal solution

by time τm . We have sopt (tv(p)) = sk and
W (O PT ,[rv(p),τm ])

τm−rv(p)+1 =
sk + Xk

τm−rv(p)+1 . As a result,

(es(tv(p)) − 1)(tv(p+1) − tv(p))
≤ G(

wv(p)

dv(p)−rv(p)+1 )(tv(p+1) − tv(p))

≤ G(sk + Xk
τm−rv(p)+1 )(tv(p+1) − tv(p))

≤ ∑
tv(p)≤t≤tv(p+1)−1(e

sk+ Xk
τm−t+1 − 1)

≤ ∑
tv(p)≤t≤tt (p+1)−1

τm−τk+1
τm−t+1 (e

sk+ Xk
τm−τk+1 − 1)

≤ (ln(τm − tv(p) + 1) − ln(τm − tv(p+1) + 1))(τm − τk +
1)(e

sk+ Xk
τm−τk+1 − 1)

≤ (ln(τm−tv(p)+1)−ln(τm−tv(p+1)+1))E(O PT, [τk, τm ])
≤ (ln(τm − tv(p) + 1) − ln(τm − tv(p+1) + 1))E(O PT ).

The third inequality holds since
W (O PT ,[rv(p),τm ])

τm−rv(p)+1 ≤
(W (O PT ,[rv(p),τm ])

τm−t+1 with rv(p) ≤ tv(p) ≤ t . The forth one is

because ea+ b
c − 1 ≤ c′ · ea+ b

c·c′ − 1 where c′ = τm−τk+1
τm−t+1 ≤ 1

when t ≤ τk and we treat sk to be a constant a. The
third last one is correct since

∫ tv(p+1)−1
tv(p)

1
τm−t+1 dt ≤ ln(τm −

tv(p) + 1) − ln(τm − tv(p+1) + 1). The second last one is
because the optimal solution completes at least an amount
(sk + Xk

τm−τk+1 )(τm − τk + 1) of workload in interval [τk, τm]
and hence E(O PT, [τk , τm ]) ≥ (τm −τk +1)(e

sk+ Xk
τm−τk+1 −1)

by the convexity of G(·).
Now consider more complex case that tasks have

dv(p) > τm . Still, we have
wv(p)

dv(p)−rv(p)+1 ≤ W (O PT ,[rv(p),dv(p)])
dv(p)−rv(p)+1 .

Let Xk be the amount of data in the area that is covered by
sopt but above rate sk in the optimal solution by time τm .

If
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 ≤ W (O PT ,[rv(p),τm ])
τm−rv(p)+1 = sk + Xk

τm−rv(p)+1 ,

we have the same reduction as above. If
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 >

sk + Xk
τm−rv(p)+1 , it is easy to see that

W (O PT ,[τm+1,dv(p)])
dv(p)−τm

> sk .
The amount W (O PT, [τm + 1, dv(p)]) of data transmitted in
interval [τm + 1, dv(p)] is at least sk · (dv(p) − τm) (where
W (O PT, [τm +1, dv(p)])−sk ·(dv(p)−τm) is always a positive

value) and thus
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 = sk + X ′
k

dv(p)−rv(p)+1 by
writing X ′

k = W (O PT, [τk , dv(p)]) − sk · (dv(p) − τk + 1).
Moreover, we obtain a lower bound on the energy consumption
of the optimal solution that E(O PT ) ≥ (dv(p)−τk +1)G(sk +
W (O PT ,[τk,dv(p)])−sk ·(dv(p)−τk+1)

dv(p)−τk+1
) = (dv(p) − τk + 1)G(sk +

X ′
k

dv(p)−τk+1 ) by the convexity of G(·). Thus,

(es(tv(p)) − 1)(tv(p+1) − tv(p))

≤ G(
W (O PT ,[rv(p),dv(p)])

dv(p)−rv(p)+1 )(tv(p+1) − tv(p))

= G(sk + X ′
k

dv(p)−rv(p)+1 )(tv(p+1) − tv(p))

≤ ∑
tv(p)≤t≤tv(p+1)−1(e

sk+ X ′
k

dv(p)−t+1 − 1)

≤ ∑
tv(p)≤t≤tt (p+1)−1

dv(p)−τk+1
dv(p)−t+1 (e

sk+ X ′
k

dv(p)−τk+1 − 1)

≤ (ln(dv(p) − tv(p) + 1) − ln(dv(p) − tv(p+1) + 1))(dv(p) −
τk + 1)(e

sk+ X ′
k

dv(p)−τk+1 − 1)
≤ (ln(dv(p) − tv(p) + 1) − ln(dv(p) − tv(p+1) +

1))E(O PT, [τk, dv(p)])
≤ (ln(dv(p) − tv(p) + 1) − ln(dv(p) − tv(p+1) + 1))E(O PT )
≤ (ln(τm − tv(p) + 1) − ln(τm − tv(p+1) + 1))E(O PT ).

The forth inequality is because ea+ b
c − 1 ≤ c′ · ea+ b

c·c′ − 1
where c′ = dv(p)−τk+1

dv(p)−t+1 ≤ 1 when t ≤ τk and we treat sk to
be a constant a. The third last inequality holds by applying
the lower bound for the optimal solution stated above, i.e.,

E(O PT, [τk , dv(p)]) ≥ (dv(p)−τk +1)(e
sk+ X ′

k
dv(p)−τk+1 −1). The

last inequality holds because ln(dv(p) − tv(p) + 1)− ln(dv(p) −
tv(p+1) + 1) ≤ ln(τm − tv(p) + 1) − ln(τm − tv(p+1) + 1) when
dv(p) > τm .

Therefore, for both cases, we have obtained that
s(tv(p))(tv(p+1)−tv(p)) ≤ (ln(τm −tv(p)+1)−ln(τm −tv(p+1)+
1))E(O PT ). Summing up all the amount of energy consumed
in interval [τk−1, τk − 1], we have
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Algorithm 3 FIFO-Schedule
1: run online Algorithm FIFO-decomposition to decompose

the tasks into the odd group Sodd and even group Seven .
2: run online Algorithm MAX-REMAIN-ONLINE over tasks

in Sodd and determine the rate function sodd(t) at time t .
3: run online Algorithm MAX-REMAIN-ONLINE over tasks

in Seven to derive the rate function seven(t) at time t .
4: determine the transmission rate at time t to be s(t) =

max{sodd(t), seven(t)}.

E(ALG, [τk−1, τk − 1]) = ∑
0≤p≤s−1 s(tv(p))(rv(p+1) −

rv(p))
≤ ∑

0≤p≤s−1((ln(τm − tv(p) + 1) − ln(τm − tv(p+1) +
1))E(O PT ))

≤ (ln(τm − τk−1 + 1) − ln(τm − τk + 1))E(O PT ).
Finally, summing up all value k, we obtain that
E(ALG, [τ0, τm]) = ∑

1≤k≤m E(ALG, [τk−1, τk − 1])
≤ ∑

1≤k≤m(ln(τm − τk + 1) − ln(τm − τk−1 + 1))E(O PT )
≤ ln(τm − τ0 + 1)E(O PT ).
For the remaining interval [τm, τm+u], we can

symmetrically derive that E(ALG, [τm−1, τm+u ]) ≤
ln(τm+u − τm−1 + 1)E(O PT ). Combining the results,
the energy consumption is at most E(ALG) ≤
E(ALG, [τ0, τm]) + E(ALG, [τm−1, τm+u ]) ≤ 2(ln(τm+u −
τ0 + 1)E(O PT [τ0, τm+u ])). This completes the proof.

D. Merging the Results: Rate Schedule for FIFO Tasks

Now we are ready to combine the results above to develop
an online algorithm for FIFO tasks.

The algorithm works as follows. It decomposes the tasks J
into odd group Sodd and even group Seven in an online manner
using Algorithm FIFO-decomposition. Once a task decom-
posed arrives, it runs MAX-REMAIN-ONLINE, respectively
for the tasks in the odd group and even group. Let sodd(t)
and seven(t), respectively, be the rate functions returned by
Algorithm MAX-REMAIN-ONLINE running on tasks in Sodd

and Seven . Then, the algorithm determines its final trans-
mission rate to be s(t) = max{sodd(t), seven(t)}. Algorithm
FIFO-SCHEDULE (Algorithm 3) presents the design of the
algorithm.

We derive the performance bound of the proposed algo-
rithm. The following theorem proves that the algorithm
is O(ln L)-competitive with respect to both data traf-
fic and energy consumption. Its proof crucially relies on
the disjoint/bi-monotonicity properties of the decomposition
method and the competitiveness of MAX-REMAIN-ONLINE

running on partitioned tasks.
Theorem 3: Algorithm FIFO-SCHEDULE is O(ln L)-data

O(ln L)-energy competitive for general tasks.
Proof: Denote by W (A, S) and E(A, S) respectively

the total amount of data transmitted and the overall energy
consumption in algorithm A with the input of set S. Assume
that ALG stands for algorithm MAX-REMAIN-ONLINE.
We have W (ALG, Si ) ≤ 2 ln 2L · W (O PT, I (Si )) where
the last inequality holds by applying the bounds derived for
pairwise intersecting tasks in Lemma 4 and the fact that

τm+u − τ0 + 1 ≤ 2L since the tasks are pairwise intersecting.
Similarly E(ALG, Si ) ≤ 2 ln 2L · E(O PT, I (Si )) by
Lemma 5.

Recall that any two sets in the same odd/even group are
disjoint, i.e., I (Si )∩ I (Si+2) = ∅, and each set is composed of
pairwise intersecting tasks. Thus, for tasks in the odd group,
it can be seen that W (ALG, Sodd) = ∑

i W (ALG, S2i+1) ≤
2 ln 2L

∑
i W (O PT, I (S2i+1 )) ≤ 2 ln 2L · W (O PT, [1, T ])

and W (ALG, Seven) = 2 ln 2L
∑

i W (O PT, I (S2i )) ≤
2 ln 2L · W (O PT, [1, T ]) by the disjoint property.
Similarly, E(ALG, Sodd) = ∑

i E(ALG, S2i+1) ≤
2 ln 2L

∑
i E(O PT, I (S2i+1)) ≤ 2 ln 2L · E(O PT, [1, T ])

and E(ALG, Seven) = 2 ln 2L · ∑
i E(O PT, I (S2i )) ≤

2 ln 2L · E(O PT, [1, T ]).
Finally, we combine the results obtained respectively for

the odd group and the even group to derive the feasi-
bility and competitiveness of FIFO-SCHEDULE. Note that
Algorithm FIFO-SCHEDULE calls MAX-REMAIN-ONLINE

twice, respectively for tasks in the odd and even group.
In algorithm FIFO-SCHEDULE, setting the rate at time t to
be s(t) = max{sodd(t), seven(t)} would be enough to finish
the required data of all tasks J = Sodd ∪ Seven under the
delay constraints. This verifies the feasibility of the algo-
rithm. Furthermore, the total amount of data transmitted is∑

t s(t) = ∑
t max{sodd(t), seven(t)} ≤ W (ALG, Sodd) +

W (ALG, Seven) ≤ 4 ln 2L · W (O PT, [1, T ]). The overall
energy consumption is

∑
t es(t)−1 = ∑

t emax{sodd (t),seven(t)}−
1 ≤ ∑

t (e
sodd (t) − 1 + eseven(t) − 1) = E(ALG, Sodd) +

E(ALG, Seven) ≤ 4 ln 2L · E(O PT, [1, T ]). Therefore,
the proposed algorithm is O(ln L)-data O(ln L)-energy
competitive.

VI. ONLINE RATE SCHEDULE FOR GENERAL TASKS

WITH ARBITRARY DEADLINES

In this section, we further consider the generalized
AD task model and develop online rate schedule with bounded
competitive ratios for tasks with arbitrary deadlines.

In the previous section, the FIFO-decomposition efficiently
partitions the tasks into just two (odd/even) groups so that each
partitioned set is with good structural properties. For general
tasks with arbitrary deadlines, however, such a decomposition
method fails to partition the tasks into limited number of well-
structured groups, due to irregular intersection/sharing of the
tasks. This makes it challenging to design a rate schedule with
proven performance bound.

To address this challenge, in this section, we will propose
a novel online decomposition method to tackle the tasks with
arbitrary deadlines, and design a rate schedule with O(ln2 L)
competitiveness with respect to both data traffic and energy
consumption.

A. AD-Decomposition for Tasks With Arbitrary Deadlines

To tackle tasks with arbitrary deadlines, we propose a
new decomposition method, called AD-decomposition, which
works as follows. On the arrival of a task Ji , we find the
value r such that 2r ≤ di − ri + 1 < 2r+1 (we say that Ji

belongs to set Sr ). For such a task, we find the earliest time
t with the form t = (3y + p) · 2r such that t ∈ [ri , di ], thus
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Fig. 5. Online AD-decomposition where tasks in Sr is partitioned into groups
{Sr,p , 0 ≤ p ≤ 2}.

Algorithm 4 AD-Decomposition
1: t = 0. S = J .
2: for on the arrival of each time t do
3: for on the arrival of each task Ji ∈ S with t = ri do
4: find value r such that 2r ≤ di − ri + 1 < 2r+1.
5: if t is with the form t = (3y + p)2r where y ≥ 0, 0 ≤

p ≤ 2 then
6: set Sr,p,y = Sr,p,y ∪ Ji .
7: S = S\Ji .
8: end if
9: t = t + 1.

10: end for
11: end for

place Ji into set Sr,p,y . That is, task Ji in set Sr is placed into
set Sr,y,p if it goes across the earliest time t with the form
t = (3y + p) ·2r . It is easy to verify that such a decomposition
method can be performed in an online manner. Then, all sets
with the same value of r and p are regrouped to be a group
Sr,p = ∪y≥0Sr,p,y . In such a way, all the tasks in J are
firstly partitioned into log L� sets {Sr , 0 ≤ r ≤ log L� − 1},
and then each set Sr is further partitioned into 3 groups
{Sr,0, Sr,1, Sr,2}, resulting in 3log L� groups in total. Fig. 5
demonstrates an example on how to partition the set Sr into
3 groups {Sr,p, 0 ≤ p ≤ 2} in an online manner. Algorithm 4
implements the online decomposition procedure.

Now we examine what properties are implied by the
AD-decomposition proposed above.

• (Disjoint Property) for every two sets in the same group
Sr,p , say Sr,p,y , Sr,p,y′ ∈ Sr,p , their intervals are disjoint,
i.e., I (Sr,p,y) ∩ I (Sr,p,y′) = ∅ for any y �= y ′.

• (Pairwise Intersecting Property) all tasks in the same
set, say Sr,p,y , are alive at the same time, (3y + p) · 2r .

• (Logarithmic Groups) there are at most 3log L� groups,
i.e., {Sr,p, 0 ≤ r ≤ log L� − 1, 0 ≤ p ≤ 2}.

• (Bi-monotonicity) for any set of pairwise intersecting
tasks, the optimal solution follows the bi-monotonicity
as stated in Lemma 3.

The last three properties can be verified easily by observing
the decomposition process. The first property can be shown
as follows. For any task in set Sr , say Ji , the length of its
interval di − ri + 1 is less than 2 · 2r . If Ji goes across the
earliest time with form t = (3y + p)2r , which implies (3y +
p − 1)2r < ri ≤ (3y + p)2r < di , then it will be placed into
group Sr,p . Suppose that two tasks in the same group Sr,p ,
say Ju, Jv , respectively belong to two different sets Sr,p,y and

Algorithm 5 AD-Schedule
1: Run online Algorithm AD-Decomposition to decompose

the tasks J into logarithmic groups.
2: Run online Algorithm MAX-REMAIN-ONLINE over tasks

in each decomposed group to get the rate scomb(t).
3: Run online Algorithm MAX-REMAIN-ONLINE over the

original input tasks J directly to get the rate sori (t).
4: Return the minimum one between schedules scomb(t) and

sori (t)

Sr,p,y+1. This implies that du ≤ ru + 2 · 2r ≤ (3y + p + 2)2r

and rv > (3(y + 1) + p − 1)2r > (3y + p + 2)2r ≥ du ,
thus the intervals of Ju and Jv are disjoint. This indicates that
I (Sr,p,y) ∩ I (Sr,p,y′ ) = ∅ for any y �= y ′ and hence verifies
the disjoint property.

B. Merging the Results: Rate Schedule for AD Tasks

Now we design an online algorithm that achieves O(ln2 L)
competitiveness with respect to both data traffic and energy
consumption.

Recall the disjoint property that any two sets in the same
group Sr,p are disjoint, i.e., Sr,p,y ∩ I (Sr,p,y′ ) = ∅ for any
y �= y ′. Moreover, the tasks in the same set Sr,p,y are pairwise
intersecting. Thus, when running MAX-REMAIN-ONLINE on
Sr,p , the total amount of data transmitted/energy consumed is
bounded within O(ln L) times of the optimal solution.

Moreover, according to the logarithmic property, there are at
most 3log L� groups in {Sr,p}, which constitutes the tasks J .
Let sr,p(t) be the rate function returned by MAX-REMAIN-
ONLINE running on set Sr,p . We observe that the combined
rate function, denoted as scomb(t) = maxr,p{sr,p(t)}, is feasi-
ble to finish the workload of all tasks J . As a fact, such a rate
function can achieve O(ln2 L)-competitiveness with respect to
the bi-objectives, which will be proved later.

Based on these observations, one alternative idea for deriv-
ing O(ln2 L)-competitive algorithm is to schedule with the
rate scomb(t). In order to further improve its performance,
we further refine such a strategy by directly running MAX-
REMAIN-ONLINE over the input tasks J to get another rate
sori (t), and then return the better one of {scomb(t), sori (t)}.
The resulting algorithm will be denoted as AD-SCHEDULE

(Algorithm 5).
The following theorem proves that AD-SCHEDULE is

O(ln2 L)-data O(ln2 L)-energy competitive.
Theorem 4: Algorithm AD-SCHEDULE is O(ln2 L)-data

O(ln2 L)-energy competitive for generalized AD tasks.
Proof: Recall the disjoint property/pairwise

intersecting property of the AD-decomposition and
the competitiveness of MAX-REMAIN-ONLINE.
When running MAX-REMAIN-ONLINE with tasks in
group Sr,p , the total amount of data transmitted is
W (ALG, Sr,p) = ∑

y≥0 W (ALG, Sr,p,y ) ≤ 2 ln 2L ·
∑

y≥0 W (O PT, I (Sr,p,y )) ≤ 2 ln 2L · W (O PT, [1, T ])
where ALG stands for MAX-REMAIN-ONLINE and 2L
comes from the fact that τm+u − τ0 + 1 ≤ 2L when
applying Lemma 4. Similarly, the total amount of energy
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Fig. 6. Performance of FIFO-SCHEDULE in FIFO task model: (a) average delay; (b) data traffic; (c) energy consumption.

consumed is E(ALG, Sr,p) = ∑
y≥0 E(ALG, Sr,p,y) ≤

2 ln 2L ·∑y≥0 E(O PT, I (Sr,p,y )) ≤ 2 ln 2L ·E(O PT, [1, T ]).
Let sr,p(t) be the rate function returned by MAX-REMAIN-

ONLINE running on set Sr,p . We examine the combined rate
function scomb(t) = maxr,p{sr,p(t)(t)}. It would be enough
to finish the required data of all tasks J under the delay
constraints since J = ∪r,p Sr,p . Moreover, the total amount
of data transmitted is

∑
t scomb(t) = ∑

t maxr,p{sr,p(t)} ≤
maxr,p{∑t sr,p(t)} ≤ ∑

r,p W (ALG, Sr,p) ≤ ∑
r,p 2 ln 2L ·

W (O PT, [1, T ]) ≤ 6log L� · ln 2L · W (O PT, [1, T ]), where
the second last inequality holds by the competitiveness
of MAX-REMAIN-ONLINE running on group Sr,p and the
last one holds by the logarithmic property of the AD-
decomposition. Similarly, the overall energy consumption is∑

t escomb(t) − 1 = ∑
t emaxr,p{sr,p (t)} − 1 ≤ ∑

t

∑
r,p(e

sr,p(t) −
1) = ∑

r,p E(ALG, Sr,p) ≤ ∑
r,p 2 ln 2L · E(O PT, [1, T ]) ≤

6log L� · ln 2L · E(O PT, [1, T ]). Thus the combined rate
function scomb(t) achieves O(ln2 L)-data O(ln2 L)-energy
competitiveness.

Therefore, Algorithm AD-SCHEDULE is O(ln2 L)-data
O(ln L)-energy competitive for general tasks with arbitrary
deadlines.

1) Discussion: We note that FIFO-SCHEDULE and AD-
SCHEDULE respectively apply different partition strategies to
deal with the FIFO task model and AD task model, resulting
in different worst-case performance bounds, but they call
the same sub-procedure MAX-REMAIN-ONLINE in tackling
the partitioned pairwise intersecting tasks. FIFO-SCHEDULE

solves the scheduling problem for transmitters following first-
in-first-out rule in practice. AD-SCHEDULE extends the results
and provides solutions to the more general task model. The
latter one is with slightly worse but still well-bounded worst-
case performance compared to the former one.

VII. SIMULATIONS

Our theoretical analysis has bounded the worst-case per-
formance of the online algorithms with respect to both data
traffic and energy consumption. In this section, we perform
simulations to further validate their average performances.

In the simulation, we will compare our rate-adaptive sched-
ule with constant-rate schedules that also consider data shar-
ing. We note that the constant-rate algorithms in [4] and [24]
also consider data sharing but work only in the offline setting.
In this simulation, we will take two algorithms as the baselines

to demonstrate the advantage of our rate-adaptive scheduling
algorithms, comparing with non-rate-adaptive algorithms: one
is a natural online greedy constant-rate algorithm, which trans-
mits with the rate once there is any request waiting in the task
queue; the other is the offline greedy constant-rate algorithm
in [4]. To ensure the feasibility, the least constant-rate that
guarantees the satisfaction of all tasks’ time constraints should
be rmax = maxi

wi
di−ri +1 . Hence, we set the constant rate to be

rmax in our simulation and consequently each task Ji needs a
length wi

rmax
of transmission duration. Furthermore, to examine

whether our algorithm is close to the best possible solution, we
compare our algorithm with the optimal offline solution. In our
setting, we not only compare these algorithms with respect to
the bi-objectives, the data traffic and the energy consumption,
but also with respect to the average delay, which is the average
value of the difference between the completion time and the
arrival time of the tasks.

We first perform simulations on algorithm FIFO-
SCHEDULE for FIFO task model. The rate-power function
is set to be s = 1

2 log(1 + p) (with α = 2 ln 2) in AWGN
channel where p is in milliwatts and s is in kilobits per second
(kbps). Task arrival time is assumed to be a random integer that
follows uniform distribution U(1, 300). Task Ji arrives at ri

and the schedule needs to adjust the rate s(t) in every second.
Arrival time points are sorted so that r1 ≤ r2 ≤ . . . ≤ rn . For
each arrival time ri , the deadline is generated by randomly
selecting an integer in [ri , 300], i = 1, 2, . . . , n. The amount
of requested data of each task is assumed to be a random
variable following uniform distribution U(0kb, 900kb). Then
all deadlines are sorted so that an earlier arrived task carries
an earlier deadline, d1 ≤ d2 ≤ . . . ≤ dn .

Fig. 6 shows the simulation results of algorithm
FIFO-SCHEDULE. Each point in these figures is a mean value
of 2500 random instances. Although we did not address the
delay minimization problem in this paper, we first compare
the delay incurred in the five schedules in Figure 6(a), the
min-traffic linear programming LPR, min-energy convex pro-
graming CP, online greedy constant-rate algorithm Greedy-
Online, offline greedy constant-rate algorithm Greedy-Offline,
and our online algorithm FIFO-SCHEDULE. As it is shown in
the figure, the average delay decreases as the number of tasks
increases, which is possibly because of the sharing nature of
the tasks; With respect to delay, the online constant-rate greedy
algorithm performs good, which is natural since it is actually
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Fig. 7. Performance of AD-SCHEDULE in AD task model: (a) average delay; (b) data traffic; (c) energy consumption.

delay-oriented, and the delay of our algorithm is close to the
online greedy algorithm. Then, we examine their performance
on the bi-objectives addressed in this paper. Fig. 6(c) shows the
simulation results. Here, it is worth noticing that, with respect
to minimizing the data traffic, the optimal solution OPT-LPR
is computed by the linear programming LPR; while with
respect to minimizing the energy consumption, the optimal
solution OPT-CP is computed by the convex programming CP.
As shown in Fig. 6(b), the data traffic of our online algorithm
is less than that of the online/offline greedy constant-rate
algorithms, and close to that of the optimal offline solu-
tion. Moreover, as demonstrated in the figure, the energy
consumption of our online algorithm is much less than the
online/offline constant-rate greedy algorithms, and close to that
of the optimal solution. These together validate the efficiency
of FIFO-SCHEDULE with respect to the bi-objectives.

Next, we evaluate our algorithm AD-SCHEDULE for AD
task model. The setting is the same as above, except that
tasks are allowed to have arbitrary deadlines. Fig. 7 presents
the simulation results. We can see from the figure that the
trends of different schedules remain unchanged, and both data
traffic and the energy consumption are quite close to the
optimal solution, which is possibly because AD-SCHEDULE

further compares the decomposition-based schedule scomb(t)
with another promising schedule sori (t) and returns the better
one between them to improve the performance.

Considering that our online algorithms do not rely on any
distribution or future information, the above simulation results
validate the efficiency of the algorithms.

VIII. CONCLUSION

This paper introduces the energy-efficient transmission
problem with data sharing and conducts the first theoretical
analysis on the trade-off between the data traffic and the
energy consumption. We provide optimal algorithms for the
offline setting and online algorithms with proven competitive
ratios with respect to the bi-objectives of minimizing the data
traffic and the energy consumption. By respectively proposing
online decomposition methods, called FIFO-decomposition
and AD-decomposition, we devise online algorithms that
achieve within O(ln L) times and O(ln2 L) times of the
optimal solution for FIFO task model and AD task model,
with respect to both data traffic and energy consumption.
Simulation results further show that the average performances

of the online algorithms are close to the optimal solution, thus
validate the efficiency.

APPENDIX

A. Proofs of the Optimal Algorithm for
Common Deadline Tasks

Proof of Lemma 1: The first property can be proved by
applying the equalization to any two adjacent time slots that
belongs to the same epoch, which would not violate the time
constraints.

Consider the last two properties. With respect to a specific
task Ji , the rate in interval [ri , di ] that fulfills the requirement
wi of data may change over time. Consider the case that
the optimal solution increases the rate first, say, at time t .
Suppose on the contrary that t is not an arrival time. Assume
that Ji is the task whose workload is transmitted at time t .
Then applying the equalization method to decrease the rate at
time t and increase the rate at t − 1 could reduce the power
consumption. This contradicts the optimality of the optimal
solution and hence t must be an arrival time. Similar proof
can verify that t is a deadline point when the optimal solution
decreases at time t .

Proof of Theorem 1: Algorithm INTERVAL-DELETE finds
the interval with the largest rate in sopt in the initiation step.
The schedule in that interval is fixed by transmitting with the
largest average rate w(Jm) among all tasks. Then, it iteratively
finds all the intervals in sopt . Write W (A) and E(A) to be
the total amount of transmitted data and energy consumption
caused by a schedule A.

We first prove its optimality for minimize the energy con-
sumption. By the proof in Lemma 2, the schedule in [rm, T ]
achieves the minimum energy consumption. In the second
iteration, each task with ri < rm has max{wi −|Ii ∩Im |·w(Jm)

|(Ii ∪Im )\(Ii∩Im )| , 0}
workload to be finished in [ri , rm −1]. Thus it can be verified
that transmitting with rate max{maxi:ri <rm

wi −|Ii ∩Im |·w(Jm)
rm−ri

, 0}
is optimal for the tasks with updated workload by sim-
ilarly applying the proof in Lemma 2. Iteratively, in the
interval found in each iteration, the algorithm transmits
the data with the minimum energy. This verifies that
Algorithm INTERVAL-DELETE computes the optimal rate
schedule that achieves the energy consumption E(O PT ) of
the optimal schedule O PT .
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We now show that the schedule returned by the algorithm
transmits with the minimum amount of data W (O PT ). First,
in the first interval found by the algorithm, the amount of
data transmitted is no more than the requirement of Jm ,
which is a lower bound for any optimal solution to finish Jm .
In the second iteration, assume that the algorithm trans-
mits the remaining workload of Jk in interval [rk, rm − 1].
Since the remaining workload of Jk is wk −|Ik ∩ Im | ·w(Jm),
the total amount of data transmitted in interval [rk, T ] is no
more than that of the required workload wk , which satisfies
wk ≥ wm . This is also a lower bound for any optimal solution,
i.e. W (O PT ) ≥ wk . Iteratively, we can see that the total
amount of data transmitted by the algorithm in each iteration
matches the lower bound of any optimal solution.

Therefore, our proposed algorithm simultaneously achieves
the minimum energy consumption E(O PT ) and the minimum
transmitted data W (O PT ).
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