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Abstract: Despite the abundant research on energy-efficient rate scheduling polices in energy
harvesting communication systems, few works have exploited data sharing among multiple
applications to further enhance the energy utilization efficiency, considering that the harvested
energy from environments is limited and unstable. In this paper, to overcome the energy shortage
of wireless devices at transmitting data to a platform running multiple applications/requesters,
we design rate scheduling policies to respond to data requests as soon as possible by encouraging
data sharing among data requests and reducing the redundancy. We formulate the problem as a
transmission completion time minimization problem under constraints of dynamical data requests
and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline
setting, we discover the relationship between two problems: the completion time minimization
problem and the energy consumption minimization problem with a given completion time. We first
derive the optimal algorithm for the min-energy problem and then adopt it as a building block to
compute the optimal solution for the min-completion-time problem. For the online setting without
future information, we develop an event-driven online algorithm to complete the transmission as
soon as possible. Simulation results validate the efficiency of the proposed algorithm.

Keywords: wireless data transmission; rate schedule; data sharing; energy-efficiency; energy harvesting;
algorithm design

1. Introduction

Energy harvesting from environments has been explored and implemented as an alternative
to supplement or even replace batteries in modern wireless communication systems [1]. In such
systems, energy harvesting techniques enable wireless devices to prolong the lifetime of operating
by accumulating energy from surrounding light, thermal and kinetic energy, etc. [2,3]. Meanwhile,
more and more wireless devices nowadays are capable of adaptively changing the transmission power
or rate for the purpose of improving energy efficiency [4]. As it is widely known, the relationship
between the rate and power follows a convex function by the nature of encoding schemes [5]. Thus,
although the energy harvesting technique has potential of improving the power supply in the long
term, we still have to carefully design energy-efficient rate scheduling policies, considering that the
harvested energy is usually limited and unstable in the short-term.

Although there have been many research efforts on designing rate scheduling algorithms in energy
harvesting communication systems, most of the previous works model the transmission in an isolated
and passive manner. In other words, the job of the transmitter is to try its best to deliver requested data
(packets) exactly as accumulated in the buffer. However, in some scenarios, requested data sending to
the remote control platform can be shared. In such a scenario, different applications on the platform
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may generate different requests of data based on their own need. Although data requests arrive at
the transmitter at different time and in different required amount, the transmitted data can be shared
by multiple requesters or applications, which would further save energy as well as data traffic [6,7].
For example, in traffic monitoring sensor network systems, there are many applications in the control
center platform, such as driving directions computation, traffic characterization, congestion prediction,
cab fleet management or urban planning tools [8]. These applications may request remote data, such as
volume and average speed of traffic sampled, from a road traffic sensor. These information may be
requested (in different time and amount) by different applications, therefore, the road traffic sensor can
combine and share data transmission among data requests. Besides, in participatory sensing systems,
data sensed from smartphones should be transmitted back to the centric platform, and the sensed data
may be shared/requested by multiple applications [9].

We use an example in Figure 1 to further illustrate the core idea and its efficiency of data sharing.
In this example, there are three energy harvestings with arrival time 1, τ + 1 and 2τ + 1. There are
two data requests J1, J2 that request an amount 5x of sensed data after time 1 and an amount 3x of
sensed data after time 2τ + 1, respectively. The transmitter needs to transmit the required data to the
platform/receiver with minimum completion time while satisfying the data requests without violating
energy constraints. Figure 1a shows a feasible schedule that completes the transmission at time T
by sharing the sensed data between requests J2 and J1. That is, the sensed data with amount of 3x
in interval [2τ + 1, T] is transmitted and shared with both requests. Now request J2 is already fully
satisfied. The remaining data amount of request J1 is satisfied by transmitting 2x sensed data in time
interval [τ + 1, 2τ]. Although this schedule reduces the completion time by exploiting data sharing,
it is not the optimal one. Figure 1b illustrates a better schedule with a shorter completion time T∗,
which transmits the 2x amount of data equally in interval [1, 2τ]. Such a new schedule saves the energy
consumed in interval [1, 2τ] (due to the convexity of the rate-power function) and allows more energy
to complete the transmission of the rest data in a shorter time. Figure 1c demonstrates that if data
sharing is not exploited, the resulting competition time will be much longer since the sensed data is
transmitted in an isolated manner to satisfy the requests separately.

Figure 1. Exampary schedules with and without data sharing.

In this paper, we investigate the optimal rate scheduling policies by exploiting the data sharing
for energy harvesting communication devices so as to transmit the required data of requests with the
minimum completion time. The proposed rate schedule policy must (1) consume no more energy
than the accumulated energy by any time slot and efficiently utilize the energy, (2) share the data
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as much as possible and fulfill the data requirement, (3) complete transmission as soon as possible.
According to the knowledge of the authors, all previously designed policies in the literature either
have not exploited data sharing or can only work when all energy are available at the beginning, thus
are not applicable to energy harvesting communication systems with the consideration of data sharing.
A full review can be referred to in Section 2.

Our contributions are summarized as follows.

• This paper introduces a rate scheduling problem for energy harvesting wireless devices that
transmit required data of requests with the goal of minimizing the completion time. We exploit
the data sharing among data requests from the platform, e.g., a participatory sensing system,
to actively enhance the energy utilization of the wireless device.

• We first study a closely related min-energy problem that aims to minimize the energy consumption
within a given deadline while transmitting all required data. By decomposing the original
problem into two simplified known sub-problems, we derive the optimal offline algorithm
BOTTLENECK-SELECT that minimizes the energy consumption or determines that no feasible
solution exists within the given deadline.

• Then, by adopting BOTTLENECK-SELECT as a building block, we develop an optimal offline
algorithm for the completion time minimization problem. The idea is to use BOTTLENECK-SELECT

to narrow down the lower bound and upper bound of the minimum completion time, and then
precisely locate the optimal solution.

• We also design an event-driven online heuristic algorithm to deal with the dynamic energy
and request arrivals. Simulation results validate that its performance is close to the optimal
offline solution.

The rest of this paper is organized as follows. We provide an overview of related work in Section 2.
In Section 3, we define the system model and formulate the optimization problems. Section 4 provides
the optimal algorithm to minimize the energy consumption and determine the existence of feasible
solution within a given deadline. In Section 5, we first discuss the relationship between the min-energy
problem and two known simplified models, and then derive the optimal algorithm for the completion
time minimization problem. Online algorithm and simulations are presented in Sections 6 and 7,
respectively. Finally, we conclude the paper in Section 8.

2. Related Work

2.1. Rate-Adaptive Transmission

The design of rate-adaptive transmission algorithms with energy harvesting consideration have
been widely studied. There are mainly two types of scenarios in the literature, e.g., pre-arrived data
transmission [10–14] and dynamically arriving packet transmission [15–22].

The pre-arrived data transmission scheduling assumes unlimited data to be delivered to
investigate the wireless channel capacity and throughput. Gatzianas et al. [10] explore the rate
transmission problem with the objective of maximizing total system utility for an energy harvesting
sensor node from a stochastic aspect by developing a queue stabilizing policy. Sharma et al. [11] study
the energy management policies for throughput maximization in an energy harvesting sensor node.
Vaze et al. [12] propose a competitive online algorithm that achieves a throughput within a bounded
factor of the optimal throughput. Wu et al. [13] further consider the battery overflow in developing
online algorithms with bounded competitive ratios to the maximum throughput. Xu and Zhang [14]
address the problem of characterizing the fundamental trade-off of maximizing energy efficiency
versus spectrum efficiency in a point-to-point AWGN channel.

The dynamically arriving packet transmission scheduling assume a group of packets to be
delivered. Yang et al. are among the first group to develop packet transmission policies that take into
account the dynamic arrivals of data packets in energy harvesting communication systems [15,16].
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Since then, a series of works have investigated the rate transmission policies with packets/tasks
consideration. There are two major goals, e.g., minimizing the transmission completion time and
minimizing the energy consumption. Chen et al. [17–19] investigate the rate scheduling policies that
transmit data packets and meet the delay constraints in static channels. Shan et al. [20] study the same
problem by further assuming the allowable rate is discrete. Ozel et al. [21] develop rate schedules
with the aim of minimizing the transmission completion time in sending a given packet in a wireless
fading channel. Shan et al. [20] consider the problem of minimizing the energy consumption for
dynamically arrived packets with individual deadlines. Deshmukh and Vaze [22] target at designing
online algorithms that use minimum energy to transmit a set of dynamically arriving packets within
given deadlines.

2.2. Data Sharing

In [8], Tavakoli et al. first formulate the data sharing problem and develop online methods to
detect when to share and how to eliminate redundancies. Fang et al. [23] then introduce the interval
data sharing problem, which aims to transmit as less data as possible while guaranteeing the QoS
constraints of all applications. Zhao et al. [24] consider the fairness among users when scheduling
tasks by optimizing the min-max aggregate sensing time of the users. Zhao et al. [25] assume the data
sampling is continuous and propose a 2-approximate algorithm for maximizing the data sharing.

Wu et al. [9,26], further point out that besides the trade-off between energy consumption and
QoS constraints, there also exists a trade-off between the transmission redundancy and energy
consumption in a communication system consisting of rate-adaptive wireless devices. In their research,
they formulate the problem as a bi-objective optimization problem and develop competitive online
algorithms to simultaneously minimize the data traffic and the energy consumption, which is the
most relevant one to the present work. Although data sharing is incorporated to actively enhance
the energy usage, all previously designed policies can only work when all energy are available at
the beginning, thus are not applicable to energy harvesting communication systems with dynamical
arrivals of energy.

3. Preliminaries

In this section, we first introduce the system model of energy-efficient data transmission with
energy harvesting and data sharing, and then formulate the problem.

3.1. System Model

We consider an energy harvesting wireless communication system where a wireless transmitter
needs to transmit sensed data to a platform as requested.

The system time is equally partitioned into time slots with unit length, labeled as slot 1, 2, . . ..
We assume a time slot is the shortest time unit at which we apply a schedule, and the rate/power in
one time slot is constant.

We model data requests of applications as tasks. Let J = {J1, J2, . . . , Jn} be a set of n tasks to be
accomplished where each task/request Ji is represented as a pair (ai, wi), which means an amount wi
of sensed data after time ai is requested by Ji. ai is called an arrival point. Without loss of generality,
we assume 1 = a1 < a2 < . . . < an.

We assume data sharing among tasks/requests, where each request has a specified time
requirements of sensed data, and the sensed data in overlapped time period can be shared by two
requests, following the same data sharing model in [8,9,26].

Let H = {H1, H2, . . . , Hm} be a set of m energy harvesting events, where Hi = (ci, Ei) means
that Ei amount of energy is harvested in time slot ci by the transmitter. We assume that the Ei
amount of energy can be immediately used at the beginning of the time slot ci. For each harvesting
Hi = (ci, Ei) (1 ≤ i ≤ m), we say that a harvesting event occurs at time ci and ci is called a harvesting
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point. Without loss of generality, we assume 1 = c1 < c2 < . . . < cm. By incorporating the initial energy
in the battery into the first harvesting event H1, we treat the battery empty at the very beginning.

Obviously, there are totally (m + n) event points, ei, i = 1, 2, . . . , m + n and 1 = e1 ≤ e2 ≤ . . . ≤
em+n, including n arrival points and m harvesting points. The time interval between two adjacent
event points is called a block/epoch.

We consider a single user point-to-point transmission channel and make the same assumption as
previous works that the transmitter can adaptively change its transmission rate r, which is related to
its power p, through a function called rate-power function. It is widely known that the rate-power
function is convex and monotonous [5,16,27]. For example, in a AWGN (Additive White Gaussian
Noise) channel, r = 1

2 log(1 + p). In this paper, we use p = G(r) or r = G−1(p) to represent the
general convex rate-power function.

We summarize notations used in this paper in Table 1 for readers to refer to.

Table 1. Notations.

Symbol Semantics

J task set
Ji ith task
ai arrival time of Ji
wi amount of data requested by Ji
H the set of harvesting events
Hi ith harvesting
ci harvesting time of Hi
Ei amount of energy harvested by Hi
p = G(r) rate-power function, the power consumed to achieve a rate r
T transmission completion time
r(t) data rate specified in time t
r∗(t) optimal rate function for the min-T problem
ropt(t) optimal rate function for the min-E problem

3.2. Problem Formulation

We introduce an energy-efficient transmission problem where a transmitter needs to transmit its
data, shared by multiple tasks, to the platform with the minimum completion time.

The transmitter can adaptively adjust its transmission rate to minimize transmission delay of all
data requests according to the dynamic arrival of energy. The scheduling goal hence is to determine
the rate scheduling policy.

Definition 1 (rate scheduling policy). A rate scheduling policy is defined as the time-rate function r(t) ≥ 0
which specifies the data transmission rate r(t) in time slot t, t = 1, 2, . . . , T, where T is the total time slots
in consideration.

The sensed data can be shared by multiple tasks as long as it fits in the time intervals of the tasks.
A feasible schedule must satisfy the task fulfillment constraint that the data requirement of all tasks
within their specified time period must be fulfilled. That it, task Ji is satisfied as long as wi amount of
sensed data is transmitted after time ai,

∑ai≤t≤T r(t) ≥ wi, ∀Ji ∈ J . (1)

Note that the data transmitted with rate r(t) in time slot t can be shared by (or equivalently be
used to meet the requirement of) any task Ji alive at time t ∈ [ai, T].
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A rate scheduling policy must satisfy the energy causality constraints, that is, the total depleted
energy by time t should not exceed the total energy harvested,

∑1≤τ≤t G(r(τ)) ≤ ∑k:ck≤t Ek, ∀t ∈ [1, T]. (2)

Definition 2 (min-T problem). The completion time minimization problem is to minimize the transmission
completion time T, under the task fulfillment constraints Equation (1) and the energy causality constraints
Equation (2).

3.3. Overview of Our Solutions

For ease of reading, we introduce the overview of our solutions in this subsection.
It is natural to ask whether we can directly implement an algorithm with the goal of minimizing

the transmission time. However, we were facing much difficulty, since the optimal transmission time
is related with what rates are determined at each time slot, and even if we had known partial optimal
rate allocation in some period, we cannot determine the minimum transmission time unless we have a
complete figure about the optimal rate policy. Considering this challenge, we attempt to find a correct
upper/lower bound of the optimal/minimum transmission time for the min-T problem, using which
we can locate the optimal transmission time by developing searching strategies. Fortunately, we found
that the optimal solution for the min-E problem (to be defined below) can act as such a role.

Define E as the energy consumption incurred by a rate schedule r(t), which is computed as

E = ∑
1≤t≤T

p(t) = ∑
1≤t≤T

G(r(t)). (3)

Definition 3 (min-E problem). Given a deadline T, the energy minimization problem is to (1) find the optimal
solution to minimize the energy consumption E under the task fulfillment constraints Equation (1) and the
energy causality constraints Equation (2), or (2) report if no feasible solution exists.

For the min-E problem, note that when the given deadline T is too early, there may be no feasible
solution satisfying all constraints.

We note that computing the optimal solution for min-E problem still requires much effort to
address the trade-off introduced by data sharing and energy harvesting, which is not addressed
in prior works. In this work, we address this challenge by decomposing the problem into two
sub-problems. Then we attempt to combine their solutions by iteratively comparing two rate curves
of the sub-problems and merging them as a final correct curve of the optimal solution. Such a
decomposition-based method is of its independent interest in solving complex rate scheduling
problems, which has not been proposed in the literature, according to the knowledge of the authors.

Finally, taking such an intermediate solution as a building block, we try to figure out what is the
optimal rate policy minimizing the transmission completion time.

In the following sections, we will first develop an optimal algorithm to determine the feasibility
and output the optimal schedule for the min-E problem in Section 4, and then we will move on to
solve the original min-T problem in Section 5.

4. Min-Energy Rate Schedule under a Given Deadline

In this section, we focus on the min-E problem with a given deadline. We will first investigate
some basic properties of the optimal solution. Then, we will decompose the min-E problem into two
simplified models and figure out the relationship between the min-E problem and the decomposed
problems. Finally, we develop an optimal algorithm to compute the optimal rate schedule for the
min-E problem.
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4.1. Basic Properties of Optimal Rate Schedule

Define the optimal rate scheduling policy for the min-E problem to be ropt(t) if it exists, which is
referred to as ropt for short. We start by introducing some optimality properties about ropt(t) in the
following lemmas.

Before we start, we first introduce the concept of equalization that will be used in our proofs. Given
two rates r1, r2, if we can equalize the two rates to r1+r2

2 , the power consumption would decrease

due to the fact that 2G
(

r1+r2
2

)
< G(r1) + G(r2) for convex rate-power functions. This method is

called equalization.
We present the following two basic lemmas which can be easily extended from prior works that

do not consider data sharing [16,20] (the detailed proof is omitted here).

Lemma 1. ropt(t) changes only at event points.

Lemma 2. ropt(t) is non-decreasing.

These two lemmas show that ropt(t) is a step/staircase function. In the following discussion,
when we refer to a step, we mean a unique and consecutive part of a step function with constant rate.
Specifically, let ri be the transmission rate of step i in ropt. Accordingly, the ordered sequence of all the
steps of a step function will be called a step sequence.

Then, we derive two properties of the optimal rate scheduling policy under the data sharing setting.

Lemma 3. If ropt(t) increases at a harvesting point ci at which no task arrives, then the battery must be used
up right before ci. Viz., ∑ci−1

t=1 G(ropt(t)) = ∑k:ck<ci
Ek.

Proof. We prove the lemma by contradiction. Suppose on the contrary, ropt(t) increases at a harvesting
point ci, but there remains some amount of energy at time slot ci − 1. We focus on interval [ci − 1, ci].
Since there is no other task request arriving at ci, it implies that if we moved a small amount of data
from time slot ci to be transmitted at ci − 1, it would save some energy and would not violate any
delay constraint, leading to a contradiction. This completes the proof.

It is worth noticing that the condition that no task arrive at ci is necessary. Because otherwise if a
task with a large workload also arrives at ci, say Ji = (ci, wi), then we cannot move some data from
time slot ci to ci − 1 since the delay constraint ∑T

t=ci
r(t) ≥ wi of this task may not hold any more.

Lemma 4. If ropt(t) increases at an arrival point ai at which no energy harvesting occurs, then the total transmitted
data from this point to the deadline T will be equal to the required data of task Ji. Viz., ∑T

t=ai
ropt(t) = wi.

Proof. First of all, we have ∑T
t=ai

ropt(t) ≥ wi, since the delay constraint of every task must be satisfied.
Suppose ∑T

t=ai
ropt(t) is strictly greater than wi. Note that, we have a1 < a2 < . . . < an. Moreover,

ropt is non-decreasing according to Lemma 2. Hence, we can always find an epoch in [ai, T] and
equalize some small amount of data from that epoch to the epoch right before ai that has smaller rate
than that one in [ai, T], which would not violate the delay constraint of task Ji since ∑T

t=ai
ropt(t) > wi.

Moreover, since no energy arrives at ai, moving a small amount of energy used at ai to the time before
it would not violate the energy causality constraint. This adjustment would save some energy by
the convexity of the rate-power function, resulting in a contradiction to the optimality of ropt. Thus,
under the optimal policy, the delay constraint at that point must be satisfied as an equality.

Lemmas 1–4 together show that ropt(t) is a non-decreasing step function that changes its rate
either at a harvesting point or at an arrival point.

According to Lemmas 3 and 4, we have a direct corollary for the case that both a task request and
a harvesting event occur simultaneously,
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Corollary 1. If ropt(t) increases at a point e at which both a task request Ji = (e, wi) and a harvesting event
Hi = (e, Ei) occur, then either the total transmitted data from e to T will be equal to wi, or the battery is used
up just right before time slot e.

4.2. Problem Decomposition

Although a deadline is given, the min-E problem is still complex with dynamic arrivals of
both energy and requests. These arrival densities together have an impact on the allocation of
transmission rate. Intuitively, an efficient rate schedule in an energy harvesting communication system
tends to properly use partial energy early to avoid causing high density of remained energy in late
periods (which is energy inefficient by the convexity of rate-power function). However, the efficient
data sharing scheduling tends to reduce the traffic transmitted in early periods and increase data
transmission in late periods so as to allow more data sharing.

Observing the above dilemma in dealing with the energy harvesting and data sharing, in this
work, we address the challenge/trade-off by decomposing the problem into sub-problems. We then
combine their solutions to form the optimal solution for the original problem. According to the best of
our knowledge, no similar method has ever been proposed in the literature.

Note that previous Lemmas 3 and 4 present properties of the optimal increasing point in terms of
energy harvesting and task requesting, respectively. This implies that we may decompose the problem
into two simpler models: one is the transmission only with energy harvesting, and the other is the
transmission only with task requests and data sharing. Thus, before deriving the structure of the
optimal solution for the min-E problem, we will introduce these two simpler models.

We first introduce the DCRS problem that does not consider energy harvesting, as defined in
Definition 4.

Definition 4. Given a deadline T, the delay-constrained-only rate scheduling problem (DCRS problem) is to
find a rate function such that the total energy consumption is minimized, subject to the delay constraints of all
task requests described in Equation (1) under the data sharing setting.

For DCRS problem, Wu et al. [9,26], propose an optimal algorithm called INTERVAL-DELETE to
search for the task with the largest average data density and then iteratively fix a part of the optimal
rate function by deleting the corresponding time interval. We call the optimal rate function for DCRS
problem the ID rate schedule and use rID(t) to represent it (or rID for short if there is no ambiguity).

Next, we introduce the EHRS problem that does not consider data requests and data sharing,
as described in Definition 5.

Definition 5. Given a deadline T, the energy-harvesting-only rate scheduling problem (EHRS problem) is to
determine a rate schedule, such that the total transmitted data is maximized before the deadline T, subject to the
energy causality constraints of Equation (2).

In contrast to DCRS problem, there is no concept of data requests or data sharing. It is assumed that
there is enough data bits to be transmitted by the transmitter at the beginning of transmission, and the
only objective is to send as much data bits as possible. For EHRS problem, an optimal algorithm that
recursively fixes all parts of the optimal solution is provided in [28]. We call the optimal rate function
for EHRS problem the MT rate schedule and use rMT(t) (or rMT for short) to represent it.

It has been proved in previous work that both rID and rMT are non-decreasing step functions.
Specifically, the increasing point of rID must be a task arrival point and rID follows a similar property
as described in Lemma 4. Also, the increasing point of rMT must be corresponding to a harvesting
event and it shares a property similar to Lemma 3.

For ease of presentation, we use rID
i (t) or rID

i for short (and correspondingly rMT
i (t) or rMT

i )

to denote the rate function of the i-th step of the step function rID (and rMT). We denote the step
sequences of a step function r(t) as S = {S1, S2, . . .}, where a triple Si = (ri, ti, li) is used to describe



Sensors 2017, 17, 2958 9 of 19

the i-th step of r(t), which means the i-th step with transmission rate ri starts at time slot ti and lasts
for li time slots (including time slot ti). Thus, the end point of the i-th step is ti + li − 1. Specifically,
we use S ID =

{
SID

1 , SID
2 , . . .

}
and SMT =

{
SMT

1 , SMT
2 , . . .

}
to represent the step sequences of rID and

rMT respectively, where SID
i = (rID

i , tID
i , l ID

i ) and SMT
i = (rMT

i , tMT
i , lMT

i ).

Lemma 5. If rID
1 > 0, then J1 has the largest workload among all the tasks. That is, w1 = maxi:Ji∈J {wi}.

Proof. It can be proved by contradiction easily. Suppose J1 is not the request with the largest workload.
We can pick the one with largest required data, say Jk(k 6= 1), then it is obvious that J1 can completely
share the data of Jk, which means there is no need to allocate a rate larger than 0 with rID

1 > 0 until
Jk arrives. This leads to a contradiction and proves the lemma.

Note that the same observation as the lemma above is also applicable to the optimal solution ropt

of the min-E problem.

4.3. The Bottleneck-Select Algorithm

After introducing the basic properties of ropt and the two decomposed simple sub-problems,
we are ready to examine the key properties of the min-E problem that would guide the design of
our algorithm.

On one hand, if the energy is sufficient (or more precisely, if for all time slots t ∈ [1, T], harvested
energy is sufficient to support rID), then we have ropt = rID, since rID is the optimal rate schedule
that achieves the minimum energy consumption given a deadline T. On the other hand, if harvested
energy is insufficient to support rID, the rate level must be decreased in order to avoid energy shortage.
However, if the rate level is lowered down too much, then less data would be transmitted in the current
epoch, which would lead to a situation that more data will be transmitted later with higher rate which
is energy inefficient. Thus, we hope to reach a good trade-off between the amount of transmitted data
and energy consumption, and allocate proper transmission rate to overcome the energy shortage.

Our high level idea is to compare the rates of rID and rMT to help figure out what rate the optimal
solution ropt should choose.

Theorems 1 and 2 below together show the key properties that would help determine the rate.

Theorem 1. If rID
1 ≥ rMT

1 , then the optimal solution ropt for the min-E problem exactly equals to SMT
1 during

interval [1, lMT
1 ].

Proof. We prove Theorem 1 by contradiction. If ropt is not equal to SMT
1 under the condition that

rID
1 ≥ rMT

1 in interval [1, lMT
1 ], then we consider all the possible relationships between ropt and rMT

during interval [1, lMT
1 ] one by one:

(1) ropt(t) > rMT
1 for all t in [1, lMT

1 ].

According to the properties of rMT(t), energy will be used up by time slot lMT
1 , thus ropt cannot be

supported to have larger rate in the whole interval [1, lMT
1 ]. Therefore such a case is impossible to occur.

(2) The curve of ropt(t) intersects with that of rMT in [1, lMT
1 ].

An examplary diagram corresponding to this case is shown in Figure 2. By the non-decreasing
property of ropt in Lemma 2, it is a fact that there is at most one intersection between ropt and rMT in
interval [1, lMT

1 ]. Let the corresponding time slot of the intersection be t̂. Then ropt(t) ≤ rMT
1 in [1, t̂− 1]

and ropt(t) ≥ rMT
1 in [t̂, lMT

1 ]. We claim that t̂ cannot be a harvesting point, because otherwise according
to Lemma 3 energy is used up by time t̂, which contradicts the feasibility of rMT that has a larger rate
than ropt by time t̂. Thus, t̂ can only be an arrival point. Let the arrival task at t̂ be Ji = (t̂, wi). Now that
t̂ is an arrival point that ropt increases, we have ∑T

τ=t̂ ropt(τ) = wi according to Lemma 4. Meanwhile,
for rID, it must satisfy ∑T

τ=t̂ rID(τ) ≥ wi to follow the delay constraint of task Ji. In addition, since
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rID
1 ≥ rMT

1 > 0, which means that the first task J1 = (1, w1) has the largest amount of data request
among all tasks according to Lemma 5. So ∑T

t=1 rID(t) = w1 and at least ∑T
t=1 ropt(t) ≥ w1. Then,

∑t̂−1
τ=1 rID(τ) = ∑T

τ=1 rID(τ)−∑T
τ=t̂ rID(τ) ≤ w1 − wi , (4)

∑t̂−1
τ=1 ropt(τ) = ∑T

τ=1 ropt(τ)−∑T
τ=t̂ ropt(τ) ≥ w1 − wi . (5)

Combining Equations (4) and (5), we have ∑t̂−1
τ=1 ropt(τ) ≥ ∑t̂−1

τ=1 rID(τ). However, it is clear
that ∑t̂−1

τ=1 ropt(τ) < ∑t̂−1
τ=1 rID(τ) according to the precondition that ropt(t) ≤ rID

1 in interval [1, t̂− 1],
which brings us a contradiction. Thus, such a case is also impossible to occur.

(3) ropt(t) < rMT
1 in [1, lMT

1 ].

We consider two sub-cases: one is that ropt(t) is not constant in [1, lMT
1 ], the other is the constant

case. For the former, we can follow the discussion similar to the proof of case (2) above, except that the
intersection point in the discussion becomes the first point at which ropt(t) increases, thus we omit
the details. For the latter, we extend the interval [1, lMT

1 ] and can always find the first point at which
ropt(t) increases (ropt(t) cannot keep to be a constant rate during the whole transmission by time T,
otherwise it will contradict the existence of rID, because the delay constraint will be violated). Let the
first increasing point of ropt be a time t̂ with t̂ > lMT

1 , then t̂ must be a task arrival point or an energy
harvesting point. On one hand, if t̂ is an energy harvesting point, then energy is used up by t̂, which
implies a contradiction since rMT

1 with a larger rate than ropt cannot be supported in [1, t̂]. On the
other hand, if t̂ is an arrival point, then following the same proof as that of case (2) can also deduce a
contradiction. These together would remove the possibilities of the case.

In summary, ropt(t) must be equal to rMT
1 in interval [1, lMT

1 ].
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Figure 2. The case that ropt intersects with rMT .

Symmetrically, we have the following theorem, where the detailed proof is moved to Appendix A.

Theorem 2. If rID
1 < rMT

1 , then the optimal solution ropt(t) for min-E problem exactly equals to SID
1 during

interval [1, l ID
1 ].

Based on Theorems 1 and 2, we are able to fix the rate schedule ropt(t) in interval [1, lMT
1 ] or [1, l ID

1 ].
Then, starting with the next new time slot, the same problem would repeat, if we could correctly
update the sets of tasks and harvesting events, until all the tasks are finished.

First, we introduce the update module, whose function is to generate the same smaller-size
problem after a part of the rate schedule ropt is fixed. Let the rate and corresponding interval of the
fixed part in ropt be r and [1, l], respectively. Since a part of the optimal solution has been fixed, we shift
the time axis by l time slots and properly update the tasks and harvestings that arrive within and after
the time duration of the fixed part by treating them as new instances. The detailed implementation is
presented in Algorithm 1.
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Algorithm 1 UPDATE(J ,H, r, l)

1: update the deadline T to be T − l.
2: for each task Ji with ai ≤ l, update its arrival time to be ai = 1 and the remaining workload to be

max{wi − r · (l − ai + 1), 0}.
3: among all the tasks with ai = 1, reserve the task with largest workload and remove all the others.
4: for each task Ji with ai > l, update its arrival time to be ai − l.
5: let Enew = ∑ci≤l Ei − G(r) · l, remove all the harvestings with ci ≤ l.
6: create a new harvesting, let its arrival time be 1 and amount of energy be Enew.
7: for each harvesting Hi with ci > l, update its arrival time to be ci − l.

Then, we present the final algorithm for computing the optimal schedule ropt of the min-E problem.
The idea is to compare the first steps of rates rID and rMT in the two decomposed problems to find the
bottleneck. If rID

1 ≥ rMT
1 , we select SMT

1 as the first part of ropt, otherwise, we select SID
1 . After fixing

the first part, we recursively update the problem and compute the residual part of ropt. The detailed
implementation is presented in Algorithm BOTTLENECK-SELECT.

It is worth noticing that the min-E problem with a given deadline may have no feasible solutions.
This happens if the harvested energy is insufficient, or the deadline is set to be too early so that some
delay constraints in Equation (1) are impossible to be met. To detect the infeasibility of the input case,
we just need to check whether there exists some task that has not been finished at the end of the while
loop, as implemented in Line 15 in Algorithm 2.

Finally, we conclude that Algorithm BOTTLENECK-SELECT either returns the optimal solution or
identifies the infeasibility for the min-E problem.

Algorithm 2 BOTTLENECK-SELECT (J ,H, T)

1: let r(t)← 0 in [1, T], t← 0.
2: while t ≤ T do

3: compute the first step of ID rate schedule SID
1 = (rID

1 , tID
1 , l ID

1 ).
4: compute the first step of MT rate schedule SMT

1 = (rMT
1 , tMT

1 , lMT
1 ).

5: if rID
1 ≥ rMT

1 then

6: r(t)← rMT
1 in [t + 1, t + lMT

1 ].
7: UPDATE(J ,H, rMT

1 , lMT
1 ).

8: t← t + lMT
1 .

9: else

10: r(t)← rID
1 in [t + 1, t + l ID

1 ].
11: UPDATE(J ,H, rID

1 , l ID
1 ).

12: t← t + l ID
1 .

13: end if
14: end while
15: if there exists some task that has not been finished then

16: return infeasible
17: end if
18: return r(t)

Theorem 3. Algorithm Bottleneck-Select computes the optimal rate schedule for the min-E problem when a
feasible schedule exists, and determines the infeasibility of the input otherwise, in O((n + m)(n2 + m)) time.

Proof. We prove the optimality for minimizing the energy consumption by induction on iterations.
In the first iteration, Algorithm Bottleneck-Select correctly computes and fixes the partial optimal
schedule that minimizes the energy consumption by Theorems 1 and 2, which serves as the induction
basis. Suppose Algorithm Bottleneck-Select fixes the optimal rate allocation in interval [1, l(k)] after the
first k iterations (k ≥ 1), we need to prove that this property also holds after the (k + 1)-th iteration.
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At the beginning of the (k+ 1)-th iteration, all tasks with ai ≤ l(k) are updated by the UPDATE operation

in the k-th iteration. Specifically, each task with ai ≤ l(k) has max{wi −∑l(k)
t=ai

r(t), 0} workload to be
finished in [l(k) + 1, T], and among them only the task with the largest remaining workload is retained
and regarded as a new task at slot l(k) + 1, according to the sharing nature of the data. This operation
ensures that no extra workload is dealt with later. Then, in the (k + 1)-th iteration, it can be verified that
transmitting with the computed rate rMT

1 (or rID
1 ) is energy-optimal for the new task set and harvesting

event set by similarly applying the proof of Theorems 1 and 2 to the updated instance. Finally, when
the iteration terminates with t > T, according to the correctness of hypothesis and inductions above,
Algorithm Bottleneck-Select has fixed the optimal min-energy rate schedule in [1, T].

Next, we analyze the computational complexity. The while loop repeats at most (n + m) times,
since there are totally (n + m) event points and at least one event point is reached in each loop.
To compute SMT

1 , we only need to scan the set of harvesting events once in at most O(m) time.
However, we must construct the whole rate schedule of rID before we obtain SID

1 , because Algorithm
INTERVAL-DELETE in [26] partially fixes rID in a back-to-front manner, which takes at most O(n2) time.
The UPDATE part works with O(n + m) time and is not time consuming. Therefore, the total time
complexity is O((n + m) · (n2 + m)).

5. Optimal Rate Schedule for Min-T Problem

After we have solved the min-E problem with a given deadline, we move forward to solve the
min-T problem. The difference is that now the deadline, or the overall transmission completion time,
becomes a variable we need to optimize.

Let r∗(t) and T∗ be the rate allocation and the corresponding completion time of the optimal
solution of the min-T problem, respectively. We start again by deriving the properties of the optimal
policy, as shown in the following lemmas.

Lemma 6. Under the optimal policy, all the harvested energy must be used up by the end of transmission.

This lemma can be easily established. Because if it is not the case, we can always use the remaining
energy to increase the rate of some former epoch and shorten the transmission completion time.

Moreover, by extending the properties of Lemmas 1–4, we can easily have the following properties
for the optimal solution of the min-T problem.

Lemma 7. The optimal rate function r∗(t) of the min-T problem satisfies,

• r∗(t) is a non-decreasing step function and only changes the rate at harvesting point or arrival point.
• If r∗(t) increases only at an arrival point, then the total transmitted data from this point to the end of the

transmission will be equal to the data required at this point;
• if r∗(t) increases only at a harvesting point, then the battery must be used up just right before this point;
• if r∗(t) increases at a point e at which both a task Ji = (e, wi) and a harvesting event Hi = (e, Ei) occur,

then either the total transmitted data from this point to the end of transmission will be equal to wi, or the
battery is used up just right before e.

Although the min-T problem is quite different from the min-energy problem, the structure of their
optimal solutions are closely associated. As shown in the following lemma, we could yield the same
optimal rate schedule of the min-T problem and that of the min-E problem, under condition that we
know the optimal completion time T∗ beforehand,

Lemma 8. Under the same task set J and the set of energy harvesting eventsH, the min-T problem and min-E
problem yield the same rate schedule if the deadline in the min-E problem is set to be exactly the minimum
transmission time T∗ of the min-T problem.
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Proof. We prove by contradiction. Let ropt(t) and r∗(t) be the optimal rate scheduling policy of the
min-E problem and min-T problem, respectively. Assume that the deadline of the min- problem is
set to be exactly the shortest transmission completion time of the min-T problem, that is, T = T∗,
but ropt(t) 6= r∗(t). Since ropt(t) yields the minimum energy consumption among all the feasible
solutions, it implies that if we replace r∗(t) with ropt(t), some energy might be saved and then this
amount of energy can be used to shorten the transmission completion time, which contradicts the
optimality of T∗.

More importantly, we can easily have the following key lemma to help design our algorithm for
the min-T problem based on the results above.

Lemma 9. Under the same task set J and the set of energy harvesting eventsH, if the deadline of the min-E
problem is set to be T ≥ T∗, then there exists a feasible solution for the min-E problem, otherwise there is no
feasible solution.

Lemmas 8 and 9 imply that, by checking the feasibility of the min-E problem given a completion
time, we can determine whether such a completion time to be returned by a schedule of the min-T
problem is good enough or not. Thus, we can design some search strategy to determine the unique
optimal transmission time in the min-T problem. Generally, the high level idea of our strategy can
be divided into two phases: we first estimate a good lower bound Tlb and upper bound Tub of T∗ by
a doubling strategy (called estimation phase), then we apply binary search to exactly determine the
minimum completion time T∗ precisely (called determination phase).

The details are as follows. For the estimation phase, we properly guess an end point (deadline)
of transmission and run BOTTLENECK-SELECT to test whether the given deadline is too early. If it is
the case, we double the deadline and test again, until we reach a case that all the tasks can be done
before the deadline. Then, that deadline is an upper bound of the optimal completion time T∗, and the
deadline guessed right before that one is set to be the lower bound of T∗. The detailed description is
shown in Algorithm ESTIMATE. Note that in the first line of Algorithm 3, an denotes the arrival time of
the last task, which is a good lower bound of T∗ to be set at the beginning.

Algorithm 3 ESTIMATE (J ,H)

1: let Tlb ← an, Tub ← an + 1.
2: set sign← false.
3: while sign is not true do

4: run BOTTLENECK-SELECT(J ,H, Tub) to determine if all the tasks can be finished before Tub, if it

is, set sign← true, otherwise, set Tlb = Tub, and Tub ← Tub × 2.
5: end while
6: return Tlb, Tub

For the determination phrase, Algorithm 4 LOCATE is developed to determine the optimal
transmission time precisely. The idea is that, starting with the interval [Tlb, Tub] returned
by ESTIMATE, we test a mid point, say Tmid, to detertime the optimal completion time by
running BOTTLENECK-SELECT over that point (as a given deadline) and checking its feasibility.
If BOTTLENECK-SELECT returns a feasible solution, then we continue to search in interval [Tlb, Tmid].
Otherwise, we continue to search in interval [Tmid, Tub].
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Algorithm 4 LOCATE (J ,H, Tlb, Tub)

1: initialize r(t)← 0.
2: while Tlb + 1 < Tub do

3: let Tmid ← Tlb+Tub
2 .

4: r(t) ← BOTTLENECK-SELECT(J ,H, Tmid), record sign ← true if there is a feasible solution, otherwise

record sign← false.
5: if sign is true then

6: Tub ← Tmid.
7: else

8: Tlb ← Tmid.
9: end if

10: end while
11: r(t)← BOTTLENECK-SELECT(J ,H, Tlb).
12: if r(t) is a feasible solution then

13: return Tlb, r(t).
14: else

15: r(t)← BOTTLENECK-SELECT(J ,H, Tub)
16: return Tub, r(t).
17: end if

Finally, we conclude the optimality of the proposed algorithm in the following theorem.

Theorem 4. Algorithm ESTIMATE and LOCATE together compute the optimal rate schedule for the min-T
problem in O(log T∗ · (n + m) · (n2 + m)) time.

Proof. First, it is obvious that ESTIMATE correctly returns a lower bound and an upper bound of T∗

based on Lemma 9, and the optimality of Algorithm LOCATE can be proved based on the binary search
rule. Then, it is easy to see that both ESTIMATE and LOCATE call BOTTLENECK-SELECT O(log T∗)
times during the estimation and determination phrases. Therefore, the total time complexity of the
two algorithms is O(log T∗ · (n + m) · (n2 + m)).

6. Online Rate Schedule

In this section, we study the online min-T problem to minimize the transmission completion time
without any prior knowledge of task requests and harvesting events.

Applying the properties of the optimal offline rate allocation function, we propose an online
Algorithm ONLINE-SELECT, which works in an event-driven manner. It transmits at a constant rate
level based on currently known information until a new event (a task request or a harvesting) occurs,
and tries to share data as much as possible. The basic mechanism is, at each time slot t, we keep a
rate level that minimizes the transmission completion time of all the arrived task requests so far, with
currently harvested available energy.

As time goes by, when a harvesting event occurs, the energy is added to the battery. When a task
request comes, we check whether its required workload is larger than the current total demanded
workload. If this is true, we update the total demanded workload to be the required data in order to
ensure the fulfillment of the new task, otherwise it is unnecessary to increase the demand workload,
since this task can share data with previous ones. Then we allocate the transmission rate according
to the updated workload and available energy, by solving the equations described in Line 16 in
Algorithm 5. Generally, on one hand, if the available energy is sufficient, the rate will increase so as to
shorten the transmission time of current workload. On the other hand, if the requests are intensive, the
rate will decrease and the transmission time will be lengthened in order to overcome energy shortage.
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Algorithm 5 ONLINE-SELECT (J ,H)

1: initialize r(0)← 0, t← 1, E← 0 be the current available energy, D ← 0 be the current demanded
workloads that need to be done.

2: while time goes by and J has not been finished do
3: if there is no event occuring at time slot t then
4: if there remains some workloads then
5: r(t)← r(t− 1)
6: else
7: r(t)← 0
8: end if
9: else

10: if a task request Ji = (ai, wi) arrives at t then
11: D ← max(D, wi)
12: end if
13: if a harvesting event Hi = (ci, Ei) occurs at t then
14: E← E + Ei
15: end if
16: r, τ ← solve

{
r · τ = D,

G(r) · τ = E.
17: r(t)← r
18: end if
19: D ← D− r(t) · 1
20: E← E− G(r(t)) · 1
21: t← t + 1
22: end while

7. Simulations

We have proved the optimality of the proposed algorithm for min-T problem in the offline setting.
In this section, we further conduct simulations to show the performance of the online algorithm
ONLINE-SELECT.

We will compare our proposed ONLINE-SELECT algorithm with the optimal offline solution and
the three baselines, which are listed as follows.

• OPT, which is the optimal offline solution returned by the optimal algorithm developed in this work.
• OPT without sharing, which is the optimal offline solution of a variant of the min-T problem that

does not consider data sharing [16].
• Jing’s algorithm with sharing, which is an offline algorithm in [16] that is adopted to work in the

data sharing scenario by keeping its rate policy unchanged.
• Online-Select without sharing, which is a slightly modified version of our online algorithm

ONLINE-SELECT by simply adding new arrived workloads into the data buffer and transmitting
with local optimal rate.

We implement the simulations by MATLAB. The simulation setting is as follows. The rate-power
function modeling the AWGN channel is set to be r = G−1(p) = 1

2 log(1 + p), where p is in milliwatts
(mW) and r is in kilobits per second (kpbs). Task arrival time ai is assumed to be a random integer
that obeys uniform distribution U(1, 300). The size of requested workload is assumed to follow
normal distribution N(450 kb, (100 kb)2) by default. We also assume that the harvesting event arrives
randomly following uniform distribution U(1, 500), and the size of energy harvested is distributed
uniformly in U(0.5h, 50h) where the default value of h is 1000 mJ. In addition, both the number of tasks
and harvestings are set to be 25 if not specified. Each point in the following figures is a mean value of
100 random instances. For ease of reading, the settings of the main parameters of the simulations are
summarized in Table 2.
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Table 2. Settings of simulations.

Parameter Meaning Setting

n the number of tasks by default n = 25
ai arrival time of the i-th task random integer that obeys the uniform distribution of U(1, 300)
wi workload of the i-th task follows the normal distribution of N(450 kb, (100 kb)2)
m the number of harvestings by default m = 25
ci harvesting time of Hi random integer that obeys the uniform distribution of U(1, 500)
Ei amount of harvested energy by Hi follows the uniform distribution U(0.5h, 50h), where h is 1000 mJ

In Figure 3, we evaluate the performance of the algorithm as the number of tasks and average
workload of tasks increase, respectively. The results are shown in Figure 3a,b. We can observe that in
both cases, the curves of OPT and Online-Select increase as the number of tasks or the average workload
of tasks increases, and they outperform that of Jing’s algorithm with sharing. Furthermore, the minimum
completion time achieved by the online algorithm is within 1.2 times of the optimal solution.
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Figure 3. Performance of ONLINE-SELECT as the requests change.

Next, we further evaluate the performance as the number of harvestings and amount of average
harvested energy increase. Figure 4a,b demonstrate the results. We can see from the figure that
the transmission completion time decreases when the number of harvestings or average amount of
harvested energy increases. In both of the two sub-figures, both the solutions of our offline algorithm
and online algorithm Online-Select outperform those of Jing’s algorithm with sharing, and the ratios
between Online-Select and OPT are bounded within a factor of 1.3.
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Figure 4. Performance of ONLINE-SELECT as the harvestings change.

Last, we examine the effect of exploiting data sharing by comparing our solutions with two
baselines that have not considered the data sharing among requests.
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Figure 5a,b respectively demonstrate the results in terms of the change of average harvesting
amount and average workload. It can be seen from the figures that the output of our online algorithm
ONLINE-SELECT is close to that of the optimal offline algorithm in both scenarios. It is also obviously
that our offline optimal algorithm and online algorithm ONLINE-SELECT significantly shorten the
transmission completion time by exploiting data sharing, compared with baselines without data sharing.

Therefore, the simulations above validate the effectiveness of our algorithms.
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Figure 5. Effect of exploiting data sharing as the average harvesting amount/workload changes.

8. Conclusions

This paper attempts to exploit the data sharing to enhance the energy utilization efficiency of
energy harvesting wireless devices in data transmission. We formulate the problem as a completion
time minimization problem while satisfying the data requests and the energy constraints under
dynamic arrivals. For the offline scenario, we provide the optimal algorithm to minimize the
transmission completion time. We also propose an efficient online algorithm with performance
validated in simulations. Simulation results have validated that it significantly improves the completion
time of the transmission under dynamic energy arrivals by exploiting the data sharing. One of our
future work is to extend the work by considering the transmission in fading channel and the possible
battery overflow during the transmission. We believe the decomposition method developed in this
work is promising to be applied to solve more complex problems in designing rate scheduling policies.
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Appendix A. Proof of Theorem 2

We prove Theorem 2 through contradiction. Assume that ropt(t) does not equal to SID
1 under the

condition that rID
1 < rMT

1 , then we discuss all the possible relationships between ropt and rID during
interval [1, l ID

1 ] respectively.
Since l ID

1 + 1 is the first increasing point of rID, l ID
1 + 1 should be an arrival point and the

total transmitted data from l ID
1 + 1 to deadline T exactly equals to the required data of the arrival

task, according to the fact that rID shares a property similar to Lemma 4. Let the arrival task be
Ji = (l ID

1 + 1, wi), then we have ∑T
t=l ID

1 +1 rID(t) = wi.

(1) ropt(t) > rID
1 for all t ∈ [1, l ID

1 ]
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Since ropt(t) > 0, it is not hard to speculate that the first task J1 = (1, w1) requires the largest
amount of data among all tasks. Thus, we have ∑T

t=1 ropt(t) = ∑T
t=1 rID(t) = w1. Due to the

precondition that ropt(t) > rID
1 for all t ∈ [1, l ID

1 ], we must have ∑
l ID
1

t=1 ropt(t) > ∑
l ID
1

t=1 rID(t). Then,
we calculate the amount of transmitted data of ropt(t) in interval [l ID

1 + 1, T]:

T

∑
t=l ID

1 +1

ropt(t) =
T

∑
t=1

ropt(t)−
l ID
1

∑
t=1

ropt(t)

<
T

∑
t=1

rID(t)−
l ID
1

∑
t=1

rID(t)

=
T

∑
t=l ID

1 +1

rID(t)

= wi .

(A1)

This conflicts with the satisfaction of the delay constraint for task Ji, thus removes the possibility
of the case under consideration.

(2) The curve of ropt intersects with the curve of rID in interval [1, l ID
1 ].

By the non-decreasing property of ropt, there exists only a single intersection in such case.
We assume the corresponding time of the intersection is t̂. We can derive that t̂ cannot be a
harvesting point. Otherwise, according to Lemma 3, energy is used up by time t̂. However, because
ropt(t) ≤ rID(t) < rMT

1 for all t ∈ [1, t̂− 1], it implies that rMT
1 cannot be supported by the harvested

energy, which is a contradiction. So t̂ must be an arrival point. Then following the similar method
described in the proof of Theorem 1 (case (2)), we can also deduce a contradiction.

(3) ropt(t) < rID
1 for all t ∈ [1, l ID

1 ].

The proof is the same as case (2) except that the time t̂ to be examined is not set to be the
intersection but the first increasing point of ropt(t). The details are thus omitted here.

Based on all the discussions above, ropt(t) must be equal to rID
1 in interval [1, l ID

1 ].
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