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Abstract—This paper presents an optimal rate scheduling algo-
rithm called Truncation for an energy-harvesting enabled wireless
transmitter to transmit a set of dynamically arrived packets with
minimum transmission energy. Distinct from existing works, we
allow packets to have individual delay constraints, which is the
most general model ever assumed but is very much desired to
guarantee per-application quality-of-service (QoS). Moreover, we
restrict the allowable rates to a set of discrete values, which is
more practical and required in many real applications. As the
first achievement, we obtain an optimal offline algorithm, which
assumes the rate is continuously adjustable. Then, we propose
a general framework that transforms any algorithm using the
continuous-rate model into an algorithm using only discrete-rates,
while preserving the optimality as long as the optimality holds
for convex rate-power functions. It is possible that the harvested
energy is insufficient to guarantee all packets to meet their dead-
lines. Should this occur, maximizing throughput with the limited
available energy becomes the goal to achieve. Our Truncation
algorithm is able to identify this case and produces a schedule
that guarantees maximum throughput, if packets share a common
deadline. Furthermore, based on the optimal offline algorithms,
an efficient online algorithm is designed which has been shown by
simulations to produce near optimal results.

Index Terms—Energy harvesting, packet scheduling, energy-
efficient rate scheduling, individual packet deadline, discrete rates,
wireless communications.

I. INTRODUCTION

ENERGY harvesting enables wireless devices to receive
energy from nature sources to support long life-time oper-
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ations and is being developed as commercially viable solutions
to many applications. Although this technique can provide the-
oretically sustainable power supply, we must carefully manage
the energy usage because the harvested energy is unstable and
limited. According to Shannon-Hartley Theorem on wireless
channel capacity, a slower transmission rate is preferred to save
energy, while a higher rate is preferred to shorten transmission
delay. Tremendous research efforts have been made to design
energy-efficient rate scheduling algorithms without [1]–[7] or
with [8]–[16] energy harvesting.

E. Uysal-Biyikoglu et al. [1], [2] are among the first group
to formulate the rate scheduling problem which aims at mini-
mizing the energy consumption for delivering a set of packets
before a common deadline. They propose a lazy schedule to
optimally solve the offline problem. Since then, pursuing opti-
mal rate scheduling for delay-constrained packet transmission
has received tremendous research interests. W. Chen et al. [3],
[4] consider a more general problem that allows the packets
to have different deadlines, but requires all allowed delays to
be equal. Zafer and Modiano [5], [6] further generalize the
problem to allow individual packet deadlines provided they
follow the same order packets arrive. Most recently, Shan, Luo,
and Shen [7] solve the problem that allows arbitrary individual
packet deadlines.

Recently, the rate scheduling problems under energy har-
vesting settings have attracted a lot of research interests [8]–
[16]. These works focus on designing offline rate schedules to
minimize the transmission completion time for a set of packets
[8], [9] with a limited battery capacity [10], [11], or to minimize
the transmission time for one data block in a fading channel
[12], [13], or to minimize the transmission time for one data
block per user in a broadcast communication system [14],
[15], or to minimize the transmission time for one queue of
packets per user in a broadcast system [16], or to maximize
the total throughput for two users in a Gaussian interference
channel [17]. However, none of these algorithms can guarantee
individual packet delay constraints. Since a communication
channel is usually shared by a variety of different applications,
and each application may have its own quality-of-service (QoS)
constraint, very likely, packets may have individually required
delay constraints [3]–[7]. Therefore, the optimal rate schedul-
ing problem that involves both energy-harvesting and individual
delay constraints becomes an open problem we wish to solve in
this paper.

In addition to the above research results which are directly
related to our work, there are also some other relevant research
results. Gatzianas et al. [18] investigate the system utility
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maximization problem from a stochastic aspect. Vaze et al.
[19], [20] propose an online algorithm with a competitive ratio
to maximize the achievable rate in fading channels. Zhang et al.
[21] consider a packet relay problem that aims at maximizing
the throughput. Gurakan et al. [22] investigate the throughput
maximization problem when energy can be transferred.

Most previous works assume that the transmission rate is
continuously adjustable. Although the continuous model can
ease mathematical derivations, in many real systems, transmis-
sion rate or power is restricted to a set of discrete values. For
instance, in CDMA proposal IS-95 [23], the power levels are
equally spaced by 0.5 dB, within a dynamic range of 85 dB
in the uplink and 12 dB in the downlink. WLAN standard
IEEE 802.11b/g/n allows transmission and reception of data
at 4/12/32 discrete rates respectively [24]. In academia, this
assumption has been used more and more often in many
research works [25]–[28]. Most recently, Bacinoglu and Uysal-
Biyikoglu [29] consider the discrete rates on an energy harvest-
ing communication link and propose an online schedule policy
that maximizes the throughput. Bodin and Gunduz [30] also
consider the discrete rate schedule problem. In their settings, an
optimal solution for the continuous adjustable rate model can
be easily converted to a solution for the model of discrete rates.

This paper also attempts to optimally solve the rate schedul-
ing problem for the discrete rate model. For both models, we
allow packets to have individual deadlines, which is the most
difficult model ever used in previous research. The combination
of individual deadlines and discrete rate model characterizes
significant differences between our model and those in the liter-
ature for the rate scheduling problem under energy-harvesting
settings. As the first step which is also the key step, we need
to obtain an optimal scheduling algorithm under the offline
setting, where the information regarding packets and harvesting
is known in advance and the allowable discrete transmission
rates are given as well. This step generalizes and improves on
existing algorithms in the literature, but is quite challenging
because this rate schedule must (1) consume no more energy
than the harvested amount before any time instance, (2) not
transmit any data before its arrival, (3) finish each packet
before its deadline, (4) transmit only at discrete rate values, (5)
consume as little energy as possible. Moreover, an additional
consideration must be given to the special case when the
harvested energy is insufficient to guarantee deadlines for all
packets. Should this situation occur, minimizing energy usage
is meaningless, but maximizing throughput with the limited
available energy becomes our optimization goal.

Our contributions in this paper are summarized as follows.

• We propose a novel method Truncation that produces an
optimal rate schedule for the energy minimization problem
under the continuous rate model if a feasible schedule ex-
ists. This method allows individual deadlines, which is the
most general model ever assumed in the literature so far.

• We propose a general framework that transforms any
scheduling algorithm computing the continuous rate
schedule to an algorithm computing the discrete rate
schedule while preserving the optimality. The only re-
quirement is that the optimality of such algorithms remains

whenever the rate-power function is convex, which is sat-
isfied by almost all algorithms in the literature, including
our Truncation method.

• If no feasible schedule exists for the energy minimization
problem, our Truncation method identifies and reports
this situation. Moreover, an optimal schedule is produced
that maximizes the throughput if packets share a common
deadline. In case individual deadlines are allowed, we
provide a numerical solution.

• We design an efficient online heuristic algorithm when
individual deadlines are allowed. Simulations demonstrate
that, on average, this online algorithm approaches within
93% of the optimal offline solution.

The organization of this paper is as follows. In Section II,
we formally define the system model, packet model, and the
optimization problems. Sections III and IV solve the energy
minimization problem under the continuous rate model. In
Section V, we propose a general two-step framework that is
capable of deriving the optimal algorithms in discrete rate
model. The throughput maximization problem is studied in
Section VI. An online algorithm and simulation results are
presented in Section VII. Section VIII concludes this paper.

II. PROBLEM FORMULATION

Let P = {P1,P2, . . . ,Pn} be a set of n packets to be trans-
mitted. Each packet Pi = (Bi,ai,di) has a size Bi, an arrival
time ai and an individual deadline di(> ai). Packets are sorted
so that a1 ≤ a2 ≤ . . . ≤ an. We assume that packet deadlines
follow the order packets arrive, that is d1 ≤ d2 ≤ . . .≤ dn. This
is a reasonable assumption because, in most practical systems,
packets wait in queue and are transmitted following FIFO rule
so packets completion times are surely in the same order as
their arrival times. As a result, the EDF schedule and the FIFO
schedule are identical in this paper. Let T = dn be the last
deadline. The transmission of packet Pi can start only after its
arrival time ai and must finish before its deadline di. This is
called the causality constraint [9].

Following the previous works [8]–[16], [19]–[22], let H =
{H1,H2, . . . ,Hm} be a set of m energy harvesting instances (or
harvestings for short). A harvesting Hi = (Ei,ci), 1 ≤ i ≤ m,
means that at time t = ci, the amount Ei of energy is harvested
by the transmitter. We assume 0 < c1 < c2 < .. . < cm ≤ T . The
initial energy in the battery of the transmitter is treated as a
harvesting H0 that occurs at time t = 0. Since the amount of
energy from each harvesting is limited and small compared to
the battery size, for simplicity, we assume that the battery is
large enough to store all harvested energy. Thus, we assume
that, from 0 to any moment t, the amount of consumed energy
cannot exceed the total amount of energy harvested. This is
called the energy constraint.

For each harvesting Hi = (Ei,ci), 1 ≤ i ≤ m, we say that
a harvesting event occurs at time t = ci and ci is called a
harvesting (event) point. Similarly, arrival time ai and deadline
di, 1 ≤ i ≤ n, are called an arrival event/point and a deadline
event/point. Therefore, from time 0 to T , there are (m + 2n)
event points, ei, i = 1,2, . . . ,m + 2n where e1 ≤ e2 ≤ . . . ≤
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Fig. 1. An example of four packets, P1 (240 kb, 0 s, 3 s), P2 (450 kb, 2 s, 5 s),
P3 (230 kb, 4 s, 7 s) and P4 (720 kb, 5 s, 8 s), and four harvestings, H0 (2.85 mJ,
0 s), H1 (1.09 mJ, 3 s), H2 (3.78 mJ, 4 s) and H3 (4.80 mJ, 6 s) (initial energy is
treated as harvesting H0 occurring at 0 s).

Fig. 2. An illustration of the discrete rate model, where a transmitter can use
only one of a set of allowable rates.

em+2n = dn = T . The time interval between two adjacent event
points is called an epoch. It is possible that an epoch has a
zero length if two event points occur at the same time. Fig. 1
is an example in which there are four packets and four energy
harvestings.

We consider a single user point-to-point transmission chan-
nel [1]–[6], [8]–[12] and make the same assumption as pre-
vious works that the transmitter can adaptively change its
transmission rate r, which is related to transmission power p
through a function p = g(r). The function p = g(r) is called
the rate-power function and is convex [1]–[6], [8]–[12]. The
convexity of rate-power function is satisfied in many systems
with realistic encoding/decoding schemes, such as the optimal
random coding in single-user additive White Gaussian Noise
(AWGN) channel, where r = g−1(p) = 1

2 log(1+ p
N ) and N is

the thermal noise level and often assumed N = 1 [9].
Previous researchers have assumed that the transmission rate

is continuously adjustable. The continuous rate model is not
always practical. We thus introduce the discrete rate model. Let
R = {γ0 = 0,γ1, . . . ,γs = rmax} be the set of allowable transmis-
sion rates, and {ρ0 = 0,ρ1, . . . ,ρs} be the set of corresponding
power levels, such that ρi = g(γi), i = 1,2, . . . ,s. Such a discrete
rate model is illustrated in Fig. 2. The discrete rate model is
more difficult to deal with than the continuous rate model since
it has more restrictions.

Definition 1: The packet transmission rate schedulerPi(t) :
[0,T ) →{γ0,γ1, . . . ,γs} is defined as the transmission rate for
packet Pi at time t, 0 ≤ t < T, i = 1,2, . . . ,n.

Thus, the causality constraints can be expressed as
∫ T

0
rPi(t)dt =

∫ di

ai

rPi(t)dt = Bi, i = 1,2, . . . ,n. (1)

Definition 2: The overall rate scheduler(t),0 ≤ t < T , is
defined as the sum of all packet transmission rates, r(t) =
∑n

i=1 rPi(t),0 ≤ t < T .
An overall rate schedule r(t) uniquely determines the trans-

mission rate at time t for transmitting the packets in FIFO
order. Given an overall rate schedule r(t), the corresponding
energy consumption from 0 to time t can be calculated by
E(t) =

∫ t
0 g(r(x))dx. So the energy constraint at time t can be

expressed as

E(t) =
∫ t

0
g(r(x))dx ≤ ∑

i:ci<t
Ei, t ∈ [0,T ). (2)

Definition 3: Given a set of packets P, a set of harvestings H,
and a set of allowabel rates R, as described above, a set of n rate
schedules {rP1(t),rP2(t), . . . ,rPn(t)} is called a feasible solution
if both the causality constraints (1) and the energy constraints
(2) are satisfied. The corresponding overall rate schedule is
called the feasible rate schedule.

Now, our min-E problem is defined as follows.
Definition 4: (min-E problem) The energy minimization

problem is to find a feasible solution whose corresponding
overall rate schedule r(t) minimizes the total energy consump-
tion E(T ). This overall rate schedule is called an optimal rate
schedule, denoted ropt(t) (or ropt if no ambiguity arises).

Since min-E problem may have no feasible solution if the
harvested energy is insufficient to transmit all packets, the
causality constraints (1) are thus impossible to be met. If this
is the case, we will look at the max-T problem which aims
to maximize the throughput with the limited available energy.
For the max-T problem, (1) is not required, but relaxed to the
following inequality instead of equality.

∫ T

0
rPi(t)dt =

∫ di

ai

rPi(t)dt ≤ Bi, i = 1,2, . . . ,n (3)

We assume that data is transmitted in bits in this case, so
that any amount of data can be dropped. The actual amount of
data transmitted during [0,T ) can be calculated by the following
integration,

B =
∫ T

0
r(t)dt. (4)

Now, our max-T problem is defined as follows.
Definition 5: (max-T problem) The throughput maximization

problem is to find an overall rate schedule r(t) such that
the actual amount of data transmitted determined by (4), is
maximized, while the constraints (2) and (3) are satisfied.

Before we present our algorithms in the next section, we need
to introduce a closely related known problem which assumes
the continuous rate model with no energy harvesting.

Definition 6: ([6], [4]) Under the continuous rate model and
a packet model described above, the delay constrained packet
transmission problem is to find an overall rate schedule r(t)
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such that the energy consumption, E(T ), is minimized subject
to causality constraints of (1).

No harvesting is assumed in the delay constrained packet
transmission problem defined in Definition 6, where the pri-
mary goal is to minimize the total energy consumption with an
implicit assumption that the initial energy is infinitely large. We
call the optimal overall rate schedule for this problem the ZM
rate schedule and denoted rzm(t) (or rzm for short). rzm can be
computed by the algorithm proposed by Zafer and Modiano in
[6] or the algorithm in [4]. A brief description of this algorithm
is given in Appendix A.

III. OPTIMAL RATE SCHEDULING FOR PACKETS

WITH A COMMON DEADLINE

We start with a simplified min-E problem, assuming all
packets share a common deadline (d1 = d2 = . . .= dn = T ) and
adopting continuous rate model (0 ≤ r ≤ rmax). We call this
simplified problem common deadline min-E problem. Before
introducing our Truncation method that computes the optimal
rate schedule ropt , we first investigate what properties an opti-
mal rate schedule must satisfy.

A. Basic Properties of Optimal Rate Schedule

It has been shown in [9] that, in any epoch [ek,ek+1),k =
1,2, . . . ,m+2n−1, only one constant transmission rate should
be used because of the convexity of the rate-power function.
If two rates rp �= rq were used, we can always find a single
rate r between these two rates, rp < r < rq, or rp < r < rq, to
transmit the same amount of data with less energy, or to transmit
more data with the same amount of energy. This method is
called equalization, and accordingly, two rates are said to be
equalized [9].

Therefore, ropt(t) is a step function which remains constant
in each epoch. However, ropt may change from an epoch to the
next epoch, which follows the properties below.

Lemma 1: ropt increases only at an arrival point or a harvest-
ing point.

A proof by contradiction can be easily established for
Lemma 1 by applying equalization on two adjacent epochs
where rate changes occur. We omit the details. Therefore ropt

for common deadline min-E problem will not decrease until
common deadline T .

Lemma 2: If ropt increases at an even point t, then either all
packets arrived before point t have been completely transmitted
before point t, or all harvested energy before point t has been
used up. Accordingly, point t is called a data critical point or
energy critical point of ropt , respectively.

Proof: We prove by contradiction. Suppose ropt increases
at t, but both data and energy have non-zero amount available
at t, then the epochs immediately before and after t can be
equalized, which contradicts the optimality of ropt . Thus, this
lemma is correct. �

A similar result for a simpler model is presented in [9].
From Lemma 1 and Lemma 2, it is clear that a data critical

point t < T must be an arrival point and an energy critical point
t < T must be a harvesting point.

Fig. 3. An illustration of Truncation method. (a) If harvested energy cannot
support rzm at all time instances, the higher rate is truncated. The truncation
is to find the largest rc such that the rate r(t) = min{rzm,rc} can be supported
by the harvestings. There must be an energy critical point (the dot). (b) The
truncated rate before this dot is optimal (bold line). The same problem repeats
in the next iteration.

Note that, the energy in our discussion is used for transmis-
sion only. There should be a minimum energy reserved to keep
the device operational even at or after an energy critical point.
This portion of energy is not counted or considered in this study.

Lemma 3: If t is the first energy critical point of ropt , then
any rate schedule that maximizes the data transmission in
interval [0, t) must be identical to the optimal rate schedule. In
other words, the optimal rate schedule is an unique schedule
that can maximize data transmission throughput in [0, t).

Proof: See Appendix B. �
Thus, the key to computing ropt is to find its first energy

critical point.

B. Truncation Method

The high level idea of the Truncation method is as follows.
We first compute the rzm that minimizes the total transmission
energy with the assumption that the initial energy is sufficiently
large and no harvesting is needed [6]. If, at any time t ∈ [0,T ),
harvested energy is sufficient to support rzm, then rzm already
minimizes the energy consumption and we have ropt = rzm.
Otherwise, harvestings are insufficient to support rzm. There-
fore, we truncate rzm to min{rzm,rc}, where the horizontal line
with rate rc cuts off rzm as shown in Fig. 3. Clearly, as long as rc

is small enough, the truncated rate can be sufficiently supported
by the harvestings. However, if rc is too small, then less data
would be transmitted before the critical time, which results in
more data to be transmitted later at higher rate with higher
energy consumption. Thus, we want to find the largest rate rc

such that rate = min{rzm,rc} (called the rate rzm truncated by
rc) can be supported by the harvestings. Obviously, in such a
rate schedule, there is a point by which all harvested energy is
used up but a new harvesting occurs right at this point. This
point will be proved to be the first energy critical point, and we
will claim that the rate rzm truncated by rc before this point is
optimal. Starting at this new point, the same problem repeats
after updating the packet set.

We now discuss in detail the Truncation method.
Suppose r1,r2, . . . ,rs are s different rates used by rzm in order

and the interval with rate ri starts at qi and ends at qi+1. Two
known results [2], [6] are: (1) r1 < r2 < .. . < rk; (2) At any qi,
arrived packets must have been delivered. More details are in
Appendix A.
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Since rzm requires a large initial energy while our model
relies upon harvesting, we need a procedure energy-constraint-
check to check whether rzm is sufficiently supported by the
harvestings at all time instances. This can be done by checking
all epochs in chronological order as follows. Initially, we set
variables e = h = 0. For the current epoch, if the beginning
event of the epoch is a harvesting, then add the received energy
from this harvesting to variable h. The energy consumption
during this epoch is added to variable e. If e < h, the energy
constraints are not violated till the end of this epoch, and the
procedure thus goes to the next epoch. If none of the epochs
violates the energy constraints, we say rzm passes the energy-
constraint-check. Otherwise, the procedure returns ‘fail’.

If rzm passes the energy-constraint-check, then it is already
the optimal solution to the common deadline min-E problem,
because rate schedule rzm minimizes the transmission energy. In
case rzm fails, we propose Algorithm TRUNCATION to compute
the rate rc and the first energy critical point cu. An illustration
of the Truncation method is shown in Fig. 3.

Algorithm 1 TRUNCATION(P,H,rzm, t)

1: let r1,r2, . . . ,rs be rates of rzm in [t,T )
2: let qi be the start point of the interval with ri

3: let r0 ← 0,Hm+1 ← (0,dn) for loop propose
4: for i ← 1 to sdo
5: let r(t) be the rate rzm truncated by ri

6: if r(t) fails the energy-constraint-check then
7: break//exit the for loop
8: end if
9: end for

10: tc ← qi

11: let E(tc) be the energy consumed by rzm before tc

12: u ← argmin j:c j>tc

{
∑ j−1

i=0 Ei−E(tc)
c j−tc

}

13: rc ← g−1

(
∑u−1

j=0 E j−E(tc)

cu−tc

)
14: let r(t)← min{rzm,rc}
15: return (r(t),cu)

The for loop determines index i such that ri−1 ≤ rc < ri.
Let tc = qi and E(tc) be the energy consumed by rzm before
tc. For each harvesting event point c j > tc, let H(c j) be the
total harvested energy in [0,c j) (not counting c j), then E =
H(c j)− E(tc) is the maximum energy we can use in [tc,c j).
If we use a constant rate in [tc,c j), then the largest rate we can
use is rc j = g−1(E/(c j − tc)). We are looking for a harvesting
point such that rc j is the minimum. We use this rate as the rc in
truncation. This rc is the largest because any rate that is larger
will consume all energy at some point before a harvesting point.
Equation (5) directly computes such point cu and rate rc.

u = arg min
j:c j>tc

{
∑ j−1

i=0 Ei −E(tc)

c j − tc

}

rc =g−1

(
∑u−1

i=1 Ei −E(tc)

cu − tc

)
(5)

Theorem 1: Algorithm TRUNCATION correctly computes
the first energy critical point cu of ropt if it exists; the rate rzm

truncated by rc is optimal in [0,cu).
Proof: We first prove cu is the first energy critical point

of ropt by contradiction. Suppose cv is the first energy critical
point in the optimal schedule, but v �= u. According to (5),
∑v−1

j=1 E j−E(tc)

cv−tc
>

∑u−1
j=1 E j−E(tc)

cu−tc
, and we have g−1(

∑v−1
j=1 E j−E(tc)

cv−tc
) ≥

rc. If v < u, then there must be an epoch p before cv in which
ropt > rc, because all the energy is used up at cv in rate schedule
ropt by the assumption. Consequently, there must be an epoch q
in [cv,cu) such that ropt < rc. Equalization can thus be applied
to epoch p and q to reduce the energy consumption of ropt ,
which is a contradiction. If v > u, there must be an epoch p
before cu in which ropt < rc, because some energy remains at
cu in rate schedule ropt . This leftover energy at cu by ropt also
implies there must be an epoch q in [cu,cv) in which ropt > rc.
Equalization can thus be applied to epoch p and q, which is a
contradiction. Hence, cu is the first energy critical point in the
optimal solution.

Let r(t) be the rate rzm truncated by rc. According to
Appendix A, all packets that arrived in [0, tc) must have been
completely transmitted in [0, tc) by r(t). Any schedule can not
transmit more data in [0, tc), and the rate r(t) achieves this with
the minimum energy consumption [2], [6]. Therefore, rate r(t)
has the largest energy to use in [tc,cu). Since a constant rate is
used by r(t) in [tc,cu) which produces the largest throughput
with the same amount of energy, r(t) transmits the maximum
amount of data in [0,cu). According to Lemma 3, r(t) is
identical to ropt in [0,cu). �

By repeatedly invoking Algorithm TRUNCATION, we com-
pute the optimal rate schedule by Algorithm COMMON-
TRUNCATION. Note that we have assumed that the peak rate
is restricted to rmax. Thus, in every iteration, we need to make
sure that the rate in every epoch does not exceed rmax (Line 14).
In the last iteration, if rzm passes the energy-constraint-check,
we still need to check whether rzm < rmax in all epochs. If it
passes, then we set ropt to be rzm and all data can be delivered;
otherwise, we set ropt not to exceed rmax, and, of course, the
data cannot be transmitted completely no matter how much
energy is available.

Alglorithm 2 COMMON-TRUNCATION(P, H, rmax)

1: let ropt ← 0 in [0,T ); t ← 0
2: while t < T do
3: let rzm be the optimal ZM rate schedule
4: if rzm passes the energy-constraint-check then
5: if rzm < rmax in all epochs then
6: let ropt ← rzm in [t,T )
7: return (ropt , all-sent)
8: else
9: let ropt ← min{rzm,rmax} in [t,T )

10: return (ropt , partially-sent)
11: end if
12: else
13: (r(t),cu)← TRUNCATION (P,H,rzm, t)
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14: ropt(t)← min{r(t),rmax}, in [t,cu)
15: schedule transmission according to ropt until cu

16: update packets set P and harvesting set H
17: t ← cu

18: end if
19: end while
20: return (ropt , partially-sent)//handle the case when T = cu

Theorem 2: Algorithm COMMON-TRUNCATION computes
the optimal rate ropt for the common deadline min-E problem,
if all-sent is returned.

Proof: Theorem 1 proves the optimality of the partial
schedule returned by Algorithm TRUNCATION. The Truncation
method guarantees the maximum amount of data to be transmit-
ted before every energy critical point, and thus the leftover data
at the energy critical point is minimized. In the last iteration, all-
sent is returned only if the optimal ZM rate schedule passes the
energy-constraint-check and all rates are lower than rmax. Thus
the energy consumption in the last iteration is also minimized.
This verifies the optimality of the algorithm. �

IV. OPTIMAL RATE SCHEDULING FOR PACKETS

WITH INDIVIDUAL DEADLINES

In this section, we still consider continuous rate model but
allow packets to have individual deadlines. We call this new
problem individual deadline min-E problem. Recall Fig. 1 for
an example.

A. Optimality Properties

In the individual deadline min-E problem, Lemma 1, 2, and
3 still holds. Since the deadline events may occur at any time
in duration [0,T ), we introduce the following lemma as a
supplement to Lemma 1 and 2.

Lemma 4: ropt decreases only at a deadline point. If
ropt decreases at a deadline point dk, then exactly packets
{P1,P2, . . . ,Pk} are delivered before dk and no transmission has
been started for other packets. This point dk is called a delay
critical point.

A proof by contradiction can be easily established using
equalization argument for above lemmas. We omit the details.
Actually, there is a stronger result about equalization as stated
in Theorem 3.

Theorem 3: A rate schedule is optimal if and only if no two
epochs can be equalized.

Proof: See Appendix C. �
We now define a sub-problem and study its optimality prop-

erties which will be utilized later.
Definition 7: An i-optimal rate schedule ropt(i)(t) (or ropt(i)

for short) is an optimal rate schedule to transmit the set of
packets {P1,P2, . . . ,Pi}, where 1 ≤ i ≤ n.

Obviously, we have ropt(n) = ropt . Without loss of generality,
we assume ropt(i) = 0 in interval [di,T ) where di is the last
deadline for the packets {P1,P2, . . . ,Pi}.

Theorem 4: The rate in the (i+ 1)-optimal rate schedule is
higher than or equal to that of the i-optimal rate schedule in any
epoch, i.e., ropt(i+1) ≥ ropt(i), i = 1,2, . . . ,n−1.

Proof: See Appendix D. �
Based on the above theorem, we have the following result.
Lemma 5: Before any of its data/energy critical point, rate

schedule ropt(i) is identical to ropt(i+1), i = 1,2, . . . ,n−1.
Proof: If t is an energy critical point, all energy must have

been used up by t in rate schedule ropt(i), while ropt(i+1) ≥ ropt(i)

in all epochs. Thus, the two rates must be identical before
time t. Similarly, if t is a data critical point, all data arrived
must have been delivered by t in rate schedule ropt(i), while
ropt(i+1) ≥ ropt(i) in all epochs. Thus, the two rate schedules
must be identical before time t. �

There is an immediate theorem that relates the original
problem and the sub-problems.

Theorem 5: Before any of its data/energy critical points, rate
schedule ropt(i) is identical to ropt , i = 1,2, . . . ,n.

We now define another similar sub-problem and give its
optimality properties.

Definition 8: An i-ZM optimal rate schedulerzm(i)(t) (or
rzm(i) for short) is an optimal ZM rate schedule to transmit the
set of packets {P1,P2, . . . ,Pi}, where 1 ≤ i ≤ n.

Theorem 6: rzm(i+1) ≥ rzm(i), i = 1,2, . . . ,n−1.
It follows the fact that the i-ZM optimal rate schedule prob-

lem is a special case of our min-E problem. Obviously, we have
rzm(n) = rzm.

B. Generalized Truncation Method

Recall that the idea of Truncation is to compute the largest
rate rc that truncates rzm so that it can be sufficiently supported
by harvestings until the first energy critical point. The general-
ized method follows the similar strategy, but in an indirect way
as follows.

Firstly, we perform the energy-constraint-check for rzm(i), i=
1,2, . . . ,n. If all rzm(i) pass, then ropt = rzm(n) and the problem
is solved. Otherwise, we will find the smallest index k such
that rzm(k) fails. Then, the harvestings would be insufficient to
support rzm(k), and truncation becomes necessary. Let procedure
SMALLEST-K return this value k.

On one hand, rzm(k) fails the energy-constraint-check and it
needs to be truncated. On the other hand, rzm(k−1) passes the
energy-constraint-check and it is the optimal rate schedule to
transmit packets {P1,P2, . . . ,Pk−1}, i.e., ropt(k−1) = rzm(k−1). By
Theorem 4, we have ropt(k) ≥ ropt(k−1) = rzm(k−1). That is to say,
the truncated rzm(k) should not be less than rzm(k−1). Therefore,
rate schedule rzm(k−1) is called the base. The difference between
the base and rzm(k) is called the extra. The base should not be
affected by the truncation, and only extra should be truncated.

Secondly, we identify the first point t such that rzm(k−1)(t)<
rzm(k)(t), which can be easily done by checking their rates in
each epoch. We claim that, after point t, (1) The rate of rzm(k)

never decreases until dk, the deadline of Pk; (2) The rate of
rzm(k−1) never increases until dk−1, the deadline of Pk−1.

Claim (1) can be proved by contradiction. Suppose rzm(k)

decreases first time at t ′ > t and t ′ < dk. According to
Appendix A, t ′ is a deadline point and all packets with a
deadline t ′ or earlier have been delivered by rzm(k) before t ′ but
no transmission has been started for other packets. However all
those transmitted packets must be also delivered by any feasible
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Fig. 4. An illustration of Generalized Truncation method. rzm(1) and rzm(2) are
shown in (a) and rzm(3) and rzm(4) are shown in (b). Since k = 3, the shapes of
base and extra are illustrated in (c). The truncation is to find the highest constant
rate rc represented by a straight line in the rate diagram that cuts the extra part
such that the rate combining the base and the truncated extra can be sufficiently
supported by the harvestings. In this rate schedule, there is a point at which all
harvested energy is used up but a new harvesting occurs right at this point (the
dot). This point is the first energy critical point. The truncated rate schedule is
optimal upto this energy critical point, as the bold line shown in (d).

schedule, including rzm(k−1). This contradicts to the fact that
rzm(k−1)(t)< rzm(k)(t).

Claim (2) can also be proved by contradiction. Suppose
rzm(k−1) increases first time at t ′ > t and t ′ < dk−1. According
to Appendix A, t ′ is an arrival time, and all packets with an
earlier arrival time have been delivered by rzm(k−1) at time
t ′, meaning that no feasible schedule can transmit more data
than rzm(k−1) before time t ′. This contradicts to the fact that
rzm(k−1)(t)< rzm(k)(t) also.

From these two claims, the shape of base, the rate function
rzm(k−1) after t looks like a downward staircase, as shown in
Fig. 4(c). The rate function rzm(k) after t looks like an upward
staircase, as shown in Fig. 4(c) also.

Thirdly, we compute the position of truncation. We will use
a straight line with rate rc to cut off the extra, as shown in
Fig. 4. Our goal is to find the largest rc such that this rate
can be sufficiently supported by the harvestings at all time
instances until dk. According to the above two claims, we
assume rzm(k−1)(t) = rd > rd−1 > .. . > r1 are the rates used
by rzm(k−1) from point t to dk−1. Let rzm(k)(t) = rd+1 < rd+2 <
.. . < rs be the rates used by rzm(k) from point t to dk. Since
rzm(k−1)(t) < rzm(k)(t), we have r1 < r2 < .. . < rd < rd+1 <
rd+2 < .. . < rs. Let the starting time for each rate ri be qi,
1 ≤ i ≤ s. We will decide between which two rates rc should
be located by checking each rate in {r1,r2, . . . ,rs} to find the
first one ri that fails the energy-constraint-check, which gives
range ri−1 < rc ≤ ri.

If ri ≤ rd , then rc starts from point qi−1, otherwise, rd < ri

and rc starts from qi. We use tc to denote the starting point of
rc. Then, the exact value of rc can be determined in the same
way as we discussed in Section III. A detailed pseudo code is
presented in Algorithm GENERAL-TRUNCATION.

Algorithm 3 GENERAL-TRUNCATION(P, H, rzm(k−1), rzm(k))

1: let t be the first point such that rzm(k−1)(t) < rzm(k)(t);
rd > rd−1 > .. . > r1 be the rates used by rzm(k−1) from
point t to dk−1; rd+1 < rd+2 < .. . < rs be the rates used
by rzm(k) from point t to dk

2: let the starting time for each rate ri be qi, 1 ≤ i ≤ s
3: let r0 ← 0,q0 ← dk,Hm+1 ← (0,dn) for loop propose
4: for i ← 1 to s do
5: let r(t) be the rate of base plus the extra truncated by ri

6: if r(t) fails the energy-constraint-check then
7: break//exit the for loop
8: end if
9: end for

10: if ri ≤ rd then
11: tc ← qi−1

12: E(tc)← energy consumed by rzm(k−1) before tc
13: else
14: tc ← qi

15: E(tc)← energy consumed by rzm(k) before tc
16: end if

17: u ← argmin j:c j>tc

{
∑ j−1

i=0 Ei−E(tc)
c j−tc

}

18: rc ← g−1

(
∑u−1

i=0 Ei−E(tc)
cu−tc

)
19: let r(t) be the rate rzm truncated by rc

20: return (r(t),cu)

Example We take the example in Fig. 1 to illustrate the gen-
eralized truncation method in Fig. 4. The rate-power function
is r = g−1(p) = 103 log(1+0.1p), where p is the transmission
power in milliwatts and r is the transmission rate in kilobits per
second (kbps). It can be verified that rzm(3) passes the energy-
constraint-check, while rzm(4) fails. Thus k = 3. The shapes
of base and extra are illustrated in (c). The rates of extra are
respectively r1 = 115 starting at q1 = 5, r2 = 150 starting at
q2 = 2, r3 = 225 starting at q3 = 2, r4 = 230 starting at q4 = 4,
and r5 = 240 starting at q5 = 5. The rate that combines the base
and the extra truncated by r1 is 120 in [0, 2), 150 in [2, 5) and
115 in [5, 8), and it passes the check;the rate truncated by r2

is 120 in [0, 2), 150 in [2, 8), and it passes the check; the rate
truncated by r3 is 120 in [0, 2), 225 in [2, 8), and it fails the
check. Thus, r2 ≤ rc < r3 and tc = 2. The energy consumption
before tc = 2 is E(tc) = 2g(120) = 1.73 (mJ). We check every
harvesting point: c1 : E0−1.73

c1−2 = 1.12, c2 : E0+E1−1.73
c2−2 = 1.10,

c3 : E0+E1+E2−1.73
c3−2 = 1.50, and c4 : E0+E1+E2+E3−22.3

c4−2 = 1.80.
Note that H4 = (0,8) is a virtual harvesting defined before the
for loop. Obviously, we have u = 2, rc = g−1(1.10) = 151 and
cu = c2 = 4. The optimal rate is 120 in [0, 2) and 151 in [2, 4)
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as shown in Fig. 4(d). After updating the packet set, the same
problem repeats by starting at time c2 = 4.

Theorem 7: Algorithm GENERAL-TRUNCATION correctly
computes the first energy critical point cu of ropt , if it exists; the
rate determined by the truncation is identical to ropt in [0,cu).

Proof: The computation of cu is based on (5). As proved
by Theorem 1, cu is the first energy critical point, which means
that all harvested energy will be comsumed by the truncated
rate at cu and a new harvesting occurs at cu. Moreover, the
constant rate rc is the highest such that the rate determined by
the truncation can be sufficiently supported by the harvestings
in [0,cu). Now, we show the rate determined by the truncation
is identical to ropt in [0,cu).

Let r(t) be the rate determined by the truncation which is
the rate of base plus the extra truncated by rc. By Theorem 3,
we only need to show that no two epochs can be equalized in
[0,cu). We now show this is true.

Let p < q be two epochs in [0,cu) which have rates rp and rq

respectively. If rp = rq, then p and q cannot be equalized. If rp <
rq, then let x be the first point after epoch p such that the rate
increases at x. Point x must occur at rzm(k) because, from the two
claims we discussed above, rzm(k) �= rzm(k−1) starts at point t and
rzm(k−1) will never increase after t. According to Appendix A,
data runs out at x, so rp can not be increased by equalization. If
rp > rq, let x be the first point after epoch p such that the rate
decreases at x. Similarly, we can argue that point x must occur
at rzm(k−1). According to Appendix A, x must be a delay critical
point of rzm(k−1). Thus, rp can not be decreased by equalization,
because otherwise some data would miss a deadline. Therefore,
we conclude that r(t) is optimal before cu. �

After a truncation is done and the energy critical point cu is
computed, packets in the queue are transmitted in FIFO order
using this scheduled rate upto this critical point cu. Then, we
use this critical point cu as a new initial point and compute
the remaining packets. Then truncation method repeats until
no packets remain. By doing so, the individual deadline min-
E problem is solved. A pseudo code is given in Algorithm
INDIVIDUAL-TRUNCATION.

Algorithm 4 INDIVIDUAL-TRUNCATION(P, H, rmax)

1: let ropt ← 0 in [0,T )
2: t ← 0
3: while t < T do
4: let rzm be the optimal ZM rate schedule for P
5: if rzm passes the energy-constraint-check then
6: if rzm < rmax in every epoch then
7: ropt ← rzm in [t,T )
8: return r(t)
9: else

10: return ‘non-exist’
11: end if
12: else
13: k ← SMALLEST-K(P,H)
14: (r(t),cu)←General-Truncation(H,rzm(k−1),rzm(k))
15: ropt ← min{r(t),rmax}, in [t,cu)
16: schedule the transmission according to ropt until cu

Fig. 5. The curve of new rate-power function p = G(r) that connects discrete
points (γi,g(γi)), i = 0,1,2, . . . ,s.

17: update packets set P and harvesting set H
18: t ← cu

19: end if
20: end while
21: return ‘non-exist’//handle the case when T = cu

Theorem 8: Algorithm INDIVIDUAL-TRUNCATION com-
putes the optimal rate schedule for the individual min-E prob-
lem in O(mn(n2 +m)) time.

Proof: The correctness of the algorithm follows by apply-
ing Theorem 7 to each truncation in Algorithm INDIVIDUAL-
TRUNCATION. The computational complexity is analyzed as
follows. The while loop repeats at most m times because at
least one energy critical point is located in each loop, and there
are at most m energy critical points. Within each while loop,
the most time consuming step is the procedure SMALLEST-K.
SMALLEST-K needs at most n times to call procedure energy-
constraint-check after computing rzm. It is easy to see that the
time complexity for computing rzm in [6] is O(n2). The energy-
constraint-check checks every epoch and finishes in O(m+2n)
steps. Therefore, SMALLEST-K finishes in O(n(n2 +m)) steps
and the total time complexity is O(mn(n2 +m)). �

V. A FRAMEWORK FOR DISCRETE RATE SCHEDULING

In this section, we propose a general framework that trans-
forms a schedule using continuous rate model to a schedule
using discrete rate model, while preserving the optimality as
long as the rate-power function is convex.

Most rate scheduling algorithms in the literature as well
as our algorithm are based on this convexity and the con-
tinuous rate model [1]–[6], [8]–[11]. It is the convexity of
the rate-power function that yields the fundamental trade-off
between transmission delay and energy consumption [1]–[6],
or between transmission delay and throughput [8]–[11], which
consequently leads to the optimality of these algorithms.

The key idea in our framework is to design a new convex
rate-power function p = G(r) such that the discrete rates are
embedded in this function. Let R = {γ0,γ1,γ2, . . . ,γs} be the
set of allowable rates in discrete rate model such that 0 =
γ0 < γ1 < γ2 < .. . < γs, and {ρ0 = 0,ρ1, . . . ,ρs} be the set of
corresponding power levels, such that ρi = g(γi), i = 1,2, . . . ,s.
As shown in Fig. 5, the allowable rate-power pairs are discrete
points (γi,g(γi)), i = 0,1,2, . . . ,s. We connect these discrete
points to form a continuous and convex curve, which represents
the curve of new rate-power function p = G(r) as shown in
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Fig. 5. Obviously, p = G(r) is continuous and convex and can
be formulated as follows.

p = G(r) =
γu+1 − r
γu+1 − γu

g(γu)+
r− γu

γu+1 − γu
g(γu+1),

if γu ≤ r < γu+1. (6)

We now describe our two-step framework for above men-
tioned algorithms in the literature. The replacing step is to
replace p = g(r) with p = G(r) and run the new algorithm to
produce a rate schedule r(t). The converting step is to con-
vert r(t) to allowed discrete rates. For each epoch [ei,ei+1),
let r be the rate of r(t) in this epoch, where γu ≤ r <
γu+1. We divide it into two intervals, and let rate be γu in
[ei,

r−γu
γu+1−γu

ei +
γu+1−r
γu+1−γu

ei+1) and let rate be γu+1 in [ r−γu
γu+1−γu

ei +
γu+1−r
γu+1−γu

ei+1,ei+1). The combination of the two steps generates
a feasible solution for the discrete rate model, while preserving
the optimality.

Theorem 9: The framework produces an optimal discrete
rate scheduling.

Proof: This theorem is correct because: (1) The rate
schedule r(t) produced in the replacing step is optimal with
continuous function p = G(r). (2) The optimal discrete rate
schedule performs no better than the rate schedule r(t). (3) The
discrete rate schedule produced in the converting step performs
the same with r(t).

Claim (1) is correct since p = G(r) is continuous and convex
and scheduling algorithms are based on this convexity and the
continuous rate model which implies that r(t) is still optimal
with p = G(r).

Claim (2) is true because the solution space of the optimal
discrete rate schedule is discrete points, while the solution space
of r(t) is a continuous piecewise linear function that covers
these discrete points. In other word, the solution space of the
optimal discrete rate schedule is a subset of that of the r(t).
Therefore, this claim is true.

Claim (3) can be proved as follows. In epoch [ei,ei+1), after
the converting step, the data transmission is γu(

r−γu
γu+1−γu

ei +
γu+1−r
γu+1−γu

ei+1 − ei)+γu+1(ei+1 − r−γu
γu+1−γu

ei − γu+1−r
γu+1−γu

ei+1) =

r(ei+1 − ei); the energy consumption is g(γu)(
r−γu

γu+1−γu
ei +

γu+1−r
γu+1−γu

ei+1 − ei)+g(γu+1)(ei+1 − r−γu
γu+1−γu

ei − γu+1−r
γu+1−γu

ei+1)=

(
γu+1−r
γu+1−γu

g(γu) +
r−γu

γu+1−γu
g(γu+1))(ei+1 − ei)= G(r)(ei+1 − ei).

Both stay the same. �
We take the example in Fig. 1 again, and illustrate how

to apply this framework and solve the min-E problem in the
discrete rate model in Fig. 6.

Example We take the example in Fig. 1 and feature the
difference with new function r = G(p). Let γ1 = 100, γ2 =
200, γ3 = 300. So the piecewise linear function p = G(r) is
composed of p = 0.0072r if 0 ≤ r < 100, p = 0.0077r−0.0515
if 100 ≤ r < 200, p = 0.0082r − 0.1619 if 200 ≤ r < 300.
rzm(1) and rzm(2) are given in Fig. 6(a). It can be verified that
rzm(1) passes the energy-constraint-check, while rzm(2) fails.
Thus k = 1 with new function G, note that it is k = 3 with
function g. The rates of the extra are r1 = 80 starting at q1 = 0,
r2 = 120 starting at q2 = 0, and r3 = 150 starting at q3 = 2.

Fig. 6. An illustration of the Truncation method in the discrete rate model.
In (a), extra (shadow area) is truncated. Bold line in (b) is the rate schedule
produced by the replacing step. Bold line in (c) is the result of the converting
step, in which rate is either 1 or 2.

We have 120 < rc < 150 and tc = max{q2,q3} = 2. E(tc) =
2G(120) = 1.74 (mJ) with new function G, while previously
E(tc)= 1.73 (mJ) with function g. According to (5), cu = c1 = 3
and rc = G−1(E0 −E(tc)) = 149, while previously cu = 4. So
rate schedule returned by replacing step is 120 in [0, 2) and 149
in [2, 3) as shown in (b). After the converting step, the optimal
discrete schedule is 100 (kbps) in [0 s, 1.6 s) and [2 s, 2.51 s),
200 (kbps) in [1.6 s, 2 s) and [2.51 s, 3 s) as shown in (c).

VI. MAXIMIZE TRANSMISSION THROUGHPUT

In case no feasible schedule exists for the min-E problem, we
study the max-T problem which is to find a rate schedule that
transmits maximum amount of data for the given set of packets
P with the energy harvestings H. We assume the continuous rate
model, since an optimal algorithm under continuous rate model
can be transformed to an optimal algorithm for the discrete rate
model as we discussed in previous section. We first discuss
the case where all packets share a common deadline, and then
the general max-T problem. We assume that the throughput
includes the partially transmitted data; when a deadline occurs,
the unfinished part is dropped from the queue.

A. Common Deadline Case

The common deadline max-T problem assumes all pack-
ets sharing a common deadline. In Section III, the common
deadline min-E problem is solved by Algorithm COMMON-
TRUNCATION. In fact, this algorithm can also identify if no
feasible schedules exist for the min-E problem and produces
the optimal schedule for the max-T problem for this case.

Theorem 10: Algorithm COMMON-TRUNCATION computes
the optimal rate schedule for the common deadline max-T
problem if partially-sent is returned at termination.

Proof: This algorithm returns partially-sent if the while
loop ends when t = T , or rzm passes the energy-constraint-
check but the rate in some epoch is higher than rmax. The first
case means that a truncation occurred in the last iteration before
the while loop ends and t = cu = T is an energy critical point
determined by this truncation. From Lemma 3, the data must
be maximally transmitted using all harvested energy before T .
In the second case, we set ropt = rmax if rzm > rmax, otherwise
we set ropt = rzm. According to the two properties about rzm in
Appendix A, no more data can be transmitted. �
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B. Individual Deadline Case

In general max-T problem, individual deadlines are allowed.
It seems that this problem has more complex structure and does
not admit analytical solutions. We thus provide a numerical
solution by posing it as a convex program and applying standard
convex optimization techniques to solve it within desired error
range.

Recall that there are m+2n event points, e j, 1 ≤ j ≤ m+2n,
consisting of m harvesting event points, n arrival event points
and n deadline event points. They are sorted in the order they
occur, e1 ≤ e2 ≤ . . . ≤ em+2n. We use function ξ to map each
event point to its rank in this event sequence. For example, if
ai = ek then ξ(ai) = k. Function ξ is easy to obtain and known
before scheduling. Let the length of epoch [e j,e j+1) be l j, 1 ≤
j ≤ n+2m−1.

Since in any epoch only one constant transmission rate
should be used, for each packet Pi, we use a constant rate ri j,
1 ≤ j ≤ n+ 2m− 1, to denote the rate used in epoch [e j,e j+1)
to transmit data of packet Pi. Then, the overall rate used in each
epoch can be computed by r j =∑n

i=1 ri j, j = 1,2, . . . ,m+2n−1.
Therefore, the max-T problem can be re-defined as follows.

max. B =
m+2n−1

∑
j=1

r jl j, (7)

s.t. r j =
n

∑
i=1

ri j ≤ rmax, j = 1,2, . . . ,m+2n−1, (8)

m+2n−1

∑
j=1

ri jl j =
ξ(di)−1

∑
j=ξ(ai)

ri jl j ≤ Bi, i = 1,2, . . . ,n,

(9)
ξ(ck)−1

∑
j=1

g(r j)l j ≤
k−1

∑
i=1

Ei,k = 2,3, . . . ,m. (10)

Eq. (7) is the actual amount of data transmitted. (9) is the
relaxed causality constraints and (10) is the energy constraints.
Since p = g(r) is a convex function, this problem is obviously a
convex program. Standard convex optimization techniques can
be applied to solve it within a desired error. It is worth pointing
out however that in the numerical solution, the higher accuracy
required, the more iterations (running time) must be involved.

VII. ONLINE ALGORITHM AND SIMULATIONS

In this section, based on the truncation method, we develop
an online rate scheduling algorithm without any knowledge of
distributions of arrival time, deadline, packet size, harvesting
time and harvesting amount. We evaluate the performance of
our online algorithm by the comparisons with the optimal
offline solutions.

A. Online Algorithm

Algorithm 5 ONLINE-TRUNCATION

Step 1: Each remaining packet in FIFO queue is considered
as a new packet of which the arrival time is t and the

deadline remains the same. If a packet is partially
transmitted, its un-transmitted data constitutes its
new load.//Note that there is at most one such packet
in FIFO queue, while all other data load remains
the same.

Step 2: For the new packet set P obtained from step 1,
compute optimal rate schedule rzm, assuming the
initial energy at t is large enough.//Because packets
have a common arrival time t, the rate of rzm is a non-
increasing step function according to Appendix A.

Step 3: If initial energy E is not sufficient to support rzm,
then apply truncation method to find rc to truncate
rzm such that r(t) = min{rzm,rc} consumes all E
in [t,dn), where dn is the last deadline.//As a fact,
when continuous rate is available, r(t) maximizes
the throughput if no more packets arrive or harvest-
ings occur before dn according to the discussion in
Section IV.

Step 4: Divide each epoch [ei,ei+1) into sub-epochs of a
fixed length w except the last sub-epoch, where w
is a small adjustable number.//The purpose of the
dividing is to avoid transmitting with a constant rate
for too long and approach the online adversary of
unpredictable packet/harvesting arrival.

Step 5: Convert r(t) in each sub-epoch to an optimal discrete
rate schedule using the technique in Section V so
that each sub-epoch is then partitioned into two seg-
ments using two closest discrete rates, respectively.
Let the resulting discrete rate schedule be rlocal .

Step 6: The online algorithm transmits packets in queue
according to rlocal .

Our online algorithm works in a greedy manner: transmit
at the optimal rate schedule computed based on currently
known information until a new event occurs (packet arrives or a
harvesting occurs). The primary goal of our online algorithm is
throughput maximization, however energy minimization is also
addressed whenever possible. Let E be the remaining energy at
time t. When a new event occurs at time t, the algorithm re-
computes a new schedule to be used from time t according to
the steps presented in Algorithm ONLINE-TRUNCATION.

Upon a new occurrence of an arrival/harvesting event, our
online algorithm repeats the above steps. In order to evaluate
the performance of the online algorithm, we have conducted
extensive simulations which will be discussed in the following
two subsections.

B. Simulation Settings

We compare the performance of our online algorithm with
the optimal offline solution, since currently no other existing
algorithms have studied the same min-E problem or max-T
problem subject to individual packet deadlines.

Following Yang et al. [9], we consider a band-limited addi-
tive white Gaussian noise channel, with bandwidth W = 1 MHz
and the noise power spectral density N0 = 10−19 W/Hz. We as-
sume that the distance between the transmitter and the receiver
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Fig. 7. The energy consumption by the online algorithm and by the offline optimal algorithm for the min-E problem. The default setting is the average packet
size z = 400 kb; the average harvesting inter occurrence time equals 12 s, and the average harvesting amount h = 8.0 mJ.

Fig. 8. The amount of data transmitted by the online algorithm and by the offline optimal algorithm for the max-T problem. The default setting is the average
packet size z = 500 kb; the average harvesting inter occurrence time equals 15 s, and the average harvesting amount h = 5.0 mJ.

is 1 km, and the path loss h is about 110 dB. Then, we have r =
g−1(p) = W log2(1+

ph
N0W ) = 103 log(1+ 0.1p), where p is in

milliwatts, r is in kilobits per second (kbps). The transmission
rate is discrete and restricted to {0,50,100, . . . ,600}. We set
algorithm parameter w to be 0.2 s in our simulations.

Following previous works, we also assume the distribution
of packet arrival time is a Poisson process, and set the average
packet inter arrival time to be 14 s. Packet size is assumed to
follow uniform distribution U(0.01z,1.99z) where z is the av-
erage packet size, and it is set to change from 400 kb to 1000 kb
with step 100 kb. Packet delay constraint takes a random
number in (0.2 q, 1.8 q), where q is the average delay constraints
and set to be 20 s. We also assume that energy harvesting occurs
randomly following a Poisson process, and its average inter
occurrence time changes from 12 s to 18 s. We assume that
the amount of energy harvested follows uniform distribution
U(0,2h) where h is the average amount which changes from
2 mJ to 8 mJ with step 1 mJ.

Each value shown in figures of this section is the mean
value of simulation results from 150 random instances, and in
each instance, 100 packets and 100 harvestings are generated
according to the above model. Note that, all deadlines are sorted
so that an earlier arrived packet carries an earlier deadline.

C. Simulation Results

In Fig. 7, the energy consumption of our online algorithm
is compared to the offline optimal solution that minimizes
the energy consumptions. To ensure fairness, we only make
such comparison on those random instances in which both our
online algorithm and the optimal solution completely trans-
mits all packets, where the optimal solution is achieved by

solving the min-E problem via Truncation method. We set the
average packet size z = 400 kb. The average harvesting inter
occurrence time is 12 s and the average harvesting amount
h = 8.0 mJ. These three parameters are changed from instance
to instance to study their impacts on algorithm performances.
We observe that our online algorithm consumes slightly more
energy than the optimal truncation method does in all the
three figures. In (a) and (b), since the total data of the packets
does not change, the energy consumption/curves do not change
much. In (c), the two curves increase linearly with the average
packet size.

In Fig. 8, we compare the data transmission of our online
algorithm with the offline optimal solution that maximizes
the throughput. In the default setting, the average packet size
is z = 500 kb; the average harvesting inter occurrence time
is 15 s; the average harvesting amount is h = 5.0 mJ. How
these parameters make impact on algorithm performance is
illustrated respectively in (a), (b), and (c). We observe that in all
figures, curves of our online algorithm is closely approaching
the curves of the maximum throughput. Fig. 8(a) shows that the
throughput increases as the average harvesting amount grows.
Fig. 8(b) shows that the throughput slowly decreases as the
average harvesting interval enlarges. This is because the larger
harvesting interval, the less total energy is harvested to support
transmission. Fig. 8(c) shows that the data transmission grows
as the average packet size increases.

All figures show that, on average, our online algorithm
achieves at least 93% of the throughput that is achievable by the
optimal solution. In terms of energy consumption, on average,
the online algorithm also achieves ratio of E∗/E > 93% where
E∗ is the minimum energy consumption that is achievable by
the optimal schedule.
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Fig. 9. Example depicting A(t) and Dmin(t) curves and the constructed Dzm(t)
curve.

VIII. CONCLUSION

In this paper, we have studied the energy minimization prob-
lem and the throughput maximization problem to deliver a set of
packets from a transmitter to a receiver in an energy harvesting
system, subject to individual packet deadlines and discrete
transmission rates. Based on the fundamental trade-off of the
packet delay and energy consumption, our proposed Truncation
method computes the optimal solution for the energy minimiza-
tion problem in the continuous rate model. Then, a general
framework is proposed to transform any algorithm designed
for continuous rate model (including our Truncation method)
to an algorithm in the discrete rate model while preserving
the optimality as long as the rate-power function is convex.
In case the harvested energy is not sufficient to deliver all
packets, we study the throughput maximization problem, which
can be solved by the Truncation method also if packets share
a common deadline. In this paper, we also have proposed an
energy-efficient online algorithm that schedule the transmission
for dynamically arrived packets with varying energy harvesting.
Simulation results show that, on average, the online algorithm
is efficient and well-approximates the optimal solution.

APPENDIX

A. A Brief Description of ZM Rate Schedule

Let A(t) = ∑i:ai≤t Bi denote the total amount of bits that have
arrived in time interval [0, t]; let Dmin(t) = ∑i:di≤t Bi denote
the cumulative minimum amount of bits that would satisfy the
QoS requirements if it departed by time t. Fig. 9 shows the
cumulative data-time diagram. The curve of A(t) is called
the arrival curve; the curve of Dmin(t) is called the minimum
departure curve. The key observation is that a feasible schedule
can be conveyed by a departure curve that always lies between
the arrival curve and minimum departure curve. Now, consider
the feasible departure curve as a string. Tie one end of the string
at the origin and pass the other end through Dmin(T )(= A(T )).
If we now make the string tight, then its trajectory gives the
optimal departure curve Dzm(t), as depicted in Fig. 9.

The slopes of Dzm(t) is the optimal transmission rate rzm.
Two important properties about rzm are as follows [2], [6].

• rzm decreases only at deadline points. If rzm decreases at
t, then all packets with earlier deadlines (include t) are
delivered before t and no transmission has been started for
other packets.

• rzm increases only at arrival points. If rzm increases at
t, then all packets arrived earlier than t are completely
transmitted before point t.

B. Proof of Lemma 3

We prove the lemma by contradiction. Suppose rate schedule
r(t) maximizes the data transmission in [0, t), but r �= ropt in
some epochs. Then there exists an epoch p in which r > ropt ,
because otherwise r(t) transmits less data than ropt does. Let
rp and ropt

p be the rate of r(t) and ropt in epoch p respectively.
There must also exist another epoch q, with r < ropt because t
is an energy critical point of ropt and r(t) cannot consume more
energy than ropt does in [0, t). Similarly define rq and ropt

q . By
Lemma 1, we have ropt increases until time T .

If p < q, then we must have ropt
p = ropt

q , for otherwise, by
Lemma 2, there is a data critical point in between, while r(t)
transmits more data than ropt before this point, contradicting to
the definition of a data critical point. So, rp > ropt

p = ropt
q > rq.

Obviously, rp and rq can be equalized to transmit more data.
This contradicts the assumption that r(t) maximizes the data
transmission. If q< p, then we have rq < ropt

q ≤ ropt
p < rp. Since

r(t) transmits less data than ropt before the end of epoch q, there
are non-zero data and energy at the end of epoch q. Thus, rp and
rq can be equalized to transmit more data in [0, t). It is also a
contradiction.

C. Proof of Theorem 3

It is clear that if a rate r(t) is optimal, then no equalization
can be performed. We now prove that if no equalization can
be performed without violating causality constraints or energy
constraints, then the rate schedule is optimal. Suppose on the
contrary that such a rate schedule r(t) is not optimal. Let epoch
p be the first epoch in which r(t) �= ropt , denote the two rates
in epoch p by rp and ropt

p respectively. There are two cases:
ropt

p > rp or rp > ropt
p . We only prove the first case, while the

other proof is similar. Because ropt
p > rp and both schedules

finish all data, there must be some subsequent epoch q in which
ropt

q < rq. Let epoch q be the first such epoch.
In duration between epoch p and epoch q, there is no delay

critical point of ropt , because otherwise r(t) can not transmit
less data than ropt does before this delay critical point. Thus,
ropt

p ≤ ropt
q according to Lemma 4. We have two facts for r(t):

(1) rp < ropt
p ≤ ropt

q < rq; (2) Both data and energy have a non-
zero amount at the end of epoch p. Thus rp and rq can be
equalized. This is a contradiction. Therefore, r(t) is optimal.

D. Proof of Theorem 4

It is obvious that ropt(i+1) > ropt(i) in at least one epoch in
[0,T ), since ropt(i+1) finishes one more data packet. Let epoch
p be the first such epoch. We first prove ropt(i+1) = ropt(i) before
p in Fact 1, and then prove ropt(i+1) > ropt(i) after p in Fact 2.

Fact 1: Prior to epoch p, ropt(i+1) = ropt(i).
Suppose on the contrary, there are some epochs before p

in which ropt(i+1) < ropt(i), let epoch q be the last of them.
Let t be the end point of epoch q. Thus, at time t, either
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ropt(i) decreases or ropt(i+1) increases. If ropt(i) decreases at
point t, then t is a delay critical point by Lemma 4. However
rate schedule ropt(i+1) transmits even less data than ropt(i) does
before this delay critical point, thus some packets must miss
their deadlines, which contradicts the feasibility of ropt(i+1). If
ropt(i+1) increases at t, then t is either an energy critical point
or a data critical point by Lemma 2. If t is an energy (data)
critical point, then energy is used up (data runs out) by rate
schedule ropt(i+1) at t. This implies that energy (data) is not
enough to support the transmission in ropt(i) before t, which is
a contradiction.

Fact 2: In subsequent epochs, ropt(i+1) > ropt(i).
Suppose on the contrary, there is some subsequent epoch

q with ropt(i+1) ≤ ropt(i), let epoch q be the first of them.
Thus, at the beginning of epoch q, either ropt(i+1) decreases or
ropt(i) increases. Neither is possible. The proof follows a similar
argument as the proof for Fact 1.
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