
Network lifetime maximization for time-sensitive data
gathering in wireless sensor networks

Feng Shan a,e,⇑, Weifa Liang b, Jun Luo c, Xiaojun Shen d

a School of Computer Science and Engineering, Southeast University, Jiangsu, Nanjing 210096, China
b Research School of Computer Science, Australian National University, Canberra, ACT 0200, Australia
c School of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
d School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
e Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing 210096, China

a r t i c l e i n f o

Article history:
Received 12 July 2012
Received in revised form 25 October 2012
Accepted 11 December 2012
Available online 20 December 2012

Keywords:
Wireless sensor networks
Network lifetime prolongation
Energy optimization
Load-balanced spanning tree
Network flow
Algorithm design

a b s t r a c t

Energy-constrained sensor networks have been widely deployed for environmental moni-
toring and security surveillance purposes. Since sensors are usually powered by energy-
limited batteries, in order to prolong the network lifetime, most existing research focuses
on constructing a load-balanced routing tree rooted at the base station for data gathering.
However, this may result in a long routing path from some sensors to the base station.
Motivated by the need of some mission-critical applications that require all sensed data
to be received by the base station with minimal delay, this paper aims to construct a rout-
ing tree such that the network lifetime is maximized while keeping the routing path from
each sensor to the base station minimized. This paper shows that finding such a tree is NP-
hard. Thus a novel heuristic called top-down algorithm is presented, which constructs the
routing tree layer by layer such that each layer is optimally extended, using a network flow
model. A distributed refinement algorithm is then devised that dramatically improves on
the load balance for the routing tree produced by the top-down algorithm. Finally, exten-
sive simulations are conducted. The experimental results show that the top-down algo-
rithm with balance-refinement delivers a shortest routing tree whose network lifetime
achieves around 85% of the optimum.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in electronic and communication tech-
nologies make it possible to build a large scale Wireless
Sensor Network (WSN) with hundreds of thousands of sen-
sors. Due to its wide range of applications, from environ-
mental monitoring to mission-critical surveillance [19],
WSNs have received tremendous attentions and data gath-
ering as its fundamental function has been extensively
studied in the past several years. Sensors in most WSNs

are powered by energy-limited batteries, and sometimes
it is impossible to recharge or replace these batteries when
the network is deployed in harsh or human inaccessible
environments such as battlefields or nuclear polluted re-
gions. Therefore, energy conservation in this type of net-
work is of paramount importance in order to prolong the
network lifetime. Most existing research focused on maxi-
mizing the network lifetime by constructing a load-bal-
anced routing tree for data gathering. However, such a
tree may contain long routing paths from some sensors
to the base station. In order to meet the need of mission-
critical applications that require all sensed data sending
their data to the base station with minimal delay, this pa-
per aims to constructing a routing tree rooted at the base
station that guarantees to forward the sensed data from

1389-1286/$ - see front matter ! 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2012.12.005

⇑ Corresponding author at: School of Computer Science and Engineer-
ing, Southeast University, Jiangsu, Nanjing 210096, China.

E-mail addresses: shanfeng@seu.edu.cn (F. Shan), wliang@cs.anu.
edu.au (W. Liang), junluo@nudt.edu.cn (J. Luo), shenx@umkc.edu (X. Shen).

Computer Networks 57 (2013) 1063–1077

Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.comnet.2012.12.005&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2012.12.005
mailto:shanfeng@seu.edu.cn
mailto:wliang@cs.anu.edu.au
mailto:wliang@cs.anu.edu.au
mailto:junluo@nudt.edu.cn
mailto:shenx@umkc.edu
http://dx.doi.org/10.1016/j.comnet.2012.12.005
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

any sensor along a shortest path while maximizing net-
work lifetime. As we here deal with time-sensitive data
gathering, we expect to collect the detailed data from all
sensors without any aggregation during the data transfer.
We thus assume the energy consumption of each node
(sensor) is proportional to the number of descendants of
the node in the routing tree.

This optimization problem is also applicable for non-
mission-critical but large scale WSNs. This is because wire-
less communication (particularly multi-hop relay commu-
nication) is unreliable and long routing paths may cause
frequent and repeated re-transmissions that lead to net-
work failures. Therefore, a shorter routing path is highly
desirable.

1.1. Related work

Data gathering in a WSN means collecting sensed data
from every sensor and forwarding the data to the base sta-
tion. The most popular paradigm of data gathering is in-
network processing that constructs a routing spanning tree
rooted at the base station (also referred to as a sink).
Depending on different applications, two major models
are used in data relaying, namely the aggregated relay and
non-aggregated relay models. Most routing trees adopt
the aggregated relay model. Under this model, each relay
node aggregates all received data from its children and
its own into a fixed-size message. The aggregated data
are then transmitted to its parent. This type of data gather-
ing is applicable to applications such as database queries
AVG, MIN, MAX, COUNT, and so on. In the non-aggregated
relay model, the length of a message transmitted by a relay
node depends not only on the length of its own sensed data
but also on the lengths of the messages received from its
children. We refer to this latter one as the message-length
dependent data gathering [15].

An extensively studied data gathering problem under
both aggregated and non-aggregated models is to find a
routing tree that minimizes the total energy consumption
or minimizes the maximum energy consumption among
individual nodes. Heinzelman et al. [9] initiated this study
under the aggregation model and proposed the clustering
protocol LEACH that groups nodes into a number of clus-
ters in a self-organizing manner. Then, a cluster-head
serves as the local ‘base station’ to aggregate the messages
gathered from its members and forward the result to the
sink directly. Lindsey and Raghavendra [17] presented an
improved protocol called PEGASIS, in which all nodes in a
cluster form a chain and one of them is chosen as the head
responsible for reporting the aggregated result to the base
station. Kalpakis et al. [13] attacked this problem by for-
mulating it as an integer program and gave a heuristic
solution.

A number of research papers have been published
[2,3,7,13,15,22,23] that use various energy saving or bal-
ancing models. For example, Goel and Estrin [7] addressed
the problem of minimizing the total transmission energy
consumption, assuming that the aggregation cost at each
relay node is a concave, non-decreasing function. They pro-
posed a hierarchical matching algorithm that delivers an
approximate solution within a logarithmic factor of the

optimum. Cristescu et al. [3] studied the data correlation
problem with an objective of minimizing the total trans-
mission energy consumption. They assumed that each
node is cognizant of which nodes it should be merged with
so that the merged message has a minimal length. They
showed that the data correlation problem is NP-complete,
and provided an integer program solution, using the Sle-
pian-Wolf coding approach. Rickenbach and Wattenhofer
[21] studied the same problem and provided an improved
solution with an approximation ratio of 2ð1þ

ffiffiffi
2
p
Þ, using

the shallow light tree concept [14]. Buragohain et al. [2]
studied the min–max model for the network lifetime max-
imization problem. Instead of minimizing the total energy
consumption, they focused on minimizing the maximum
energy consumption among the sensors. They showed that
finding an optimal routing tree under this model is NP-
complete, and proposed a heuristic solution. Liang and
Liu [15] also independently showed its NP-completeness
and devised several heuristics that trade off between dif-
ferent energy optimization metrics. Intanagonwiwat et al.
[12,11] studied the general data gathering issue by incor-
porating the semantics of an aggregation query into build-
ing an energy efficient routing tree that may not
necessarily be a spanning tree. For example, they proposed
a data dissemination scheme called directed diffusion with
opportunistic aggregation [11], where data is opportunisti-
cally aggregated at relaying nodes on a low-latency tree.
They also explored a greedy aggregation by a novel ap-
proach [12] that adjusts aggregation points to increase
path sharing and thereby reducing the energy
consumption.

With different objectives, a number of algorithms have
been proposed to produce different routing (spanning)
trees. For example, a Breadth-first search tree in Tiny
AGgregation service (TAG) [18] aims at minimizing the
transmission delay from each sensor to the root, while a
degree-constrained spanning tree [2,25,24] focuses on
minimizing the maximum energy consumption by any
node. Another kind of spanning tree [21] makes a trade
off between the energy cost of a minimum spanning tree
and the energy cost of a shortest path tree. It seeks a fair
balance between the total energy consumption and the
maximum energy consumption among the sensors within
each data gathering session. Wu et al. [25] considered
the network lifetime maximization problem with the same
assumption used in [2] that the size of forwarded data from
each relay node is identical and the energy consumption at
each node is proportional to the number of its children. They
generalized the original algorithm for degree-constrained
spanning trees [5] to an algorithm for routing trees in
sensor networks by incorporating the residual energy into
the design. Wu et al. [24] later further extended their re-
sults to a routing forest instead of a routing tree.

In addition to the above mentioned tree construction
algorithms, special efforts have also been made by
researchers for constructing (energy) load-balanced rout-
ing trees. For example, Hsiao et al. [10] introduced the dy-
namic load-balanced tree for a grid-topology of wireless
access networks and developed a distributed algorithm.
Dai and Han [4] introduced a hierarchy-balanced tree and
made use of the Chebyshev sum as a measuring criterion

1064 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

for top-level load-balance trees. Liang and Liu [15] consid-
ered the construction of the spanning tree dynamically
with an aim to balance the transmission load among the
sensors according to their residual energy so that the net-
work lifetime can be prolonged. Yan et al. [26] extended
the load-balanced tree concept by introducing the dynamic
load-balanced tree, in which the load-balanced tree is
dynamically constructed per data gathering session. How-
ever, the time and energy overhead incurred by this ap-
proach is too excessive to be acceptable for mission-
critical data gathering applications. Liang et al. [16] re-
cently considered the network lifetime maximization
problem for the non-aggregation model and showed its
NP-hardness. They provided an approximate solution of
Xðlog n= log log nÞ, by reducing the problem to a bottleneck
spanning tree problem.

However, almost all of these existing algorithms pro-
duce load-balancing or energy-saving trees without taking
into account the cost of transmission delays. That is, they
allow a balanced tree to be ‘slim’, which means the data
from some leaf nodes will take a much longer journey to
reach the tree root (the base station) than the average. This
may cause the failure of the entire network in an unreliable
wireless communication environment or lead to an intoler-
ably long delay for mission-critical applications.

1.2. Contributions

The major contribution made by this paper is to address
the need for time sensitive data gathering to guarantee
minimum delay when maximizing network lifetime. Un-
like previous works, this paper assumes that each sensor
must send its data to the base station within the minimum
number of hops (a shortest path). It appears to be the first
time to formulate this type of optimization problem that
has many potential applications such as disaster reliefs
and military responses. The contributions to the new opti-
mization problem by this paper can be summarized as
follows.

First, it shows that finding a maximum network lifetime
shortest path routing tree is equivalent to constructing a
node load-balanced distance spanning tree, which is NP-
hardness. Second, a novel top-down heuristic is presented,
which makes use of the network flow technique by opti-
mally constructing the balance spanning tree layer by
layer. A distributed implementation of the proposed algo-
rithm is also given. Third, to further improve the load-bal-
anced spanning tree, a distributed load-balance refinement
algorithm is proposed which effectively improves on the
load balance for the routing tree produced by the
‘top-down’ algorithm. Finally, the performance of the pro-
posed heuristics are evaluated through extensive simula-
tions. The experimental results demonstrate that the
proposed algorithms are very promising and deliver near
optimal routing trees.

The rest of the paper is organized as follows. The system
model and the optimization problem are defined in Sec-
tion 2. The proof of NP-hardness of the problem is given
in Section 3, and the top-down distance tree algorithm
and the balance-refine algorithm are proposed in Section 4
and Section 5, respectively. The performance evaluation

is given in Section 6. The conclusion is presented in
Section 7.

2. System and problem formulation

A wireless sensor network can be modeled as an undi-
rected, connected graph M ¼ ðN [fsg; LÞ, where N is a set
of n stationary, identical sensor nodes randomly deployed
in a monitoring region, s is the sink node, and L is a set
of links between sensors and a sink and the sink. There is
a link between sensors u and v if and only if they are within
transmission range of each other. For ease of presentation,
we do not distinguish a node in the graph and its corre-
sponding sensor. We treat the sink as a special sensor that
receives sensed data. We assume that every sensor has a
limited initial energy IE while the sink has an unlimited en-
ergy supply. For the distributed implementations, we as-
sume each node has no knowledge of the topology of the
entire network but assume initially each node has its local
knowledge which includes its own ID number, and its
neighbors’ ID numbers that can be easily obtained by a lo-
cal broadcast and acknowledgment messages. For the cen-
tralized algorithm, we assume the topology is known for
the computation, as other works do. It must be mentioned
that in this work although we consider the single sink data
gathering problem only, the developed algorithms and
techniques can be easily extended to solve the similar
problem in a wireless sensor network with multiple sinks.
We will attempt to design an algorithm to construct a
shortest routing tree rooted at s for a given network
MðN [fsg; LÞ such that the network lifetime is maximized
under the non-aggregated relay model. In the rest of this
paper, unless otherwise specified, we assume that a rout-
ing tree is a shortest path tree and the length of a routing
path is the number of links in the path. We further assume
that the transmission delay of a message from its source to
the destination (the sink) is proportional to the length of its
routing path. Since all the data generated from the sensors
must go through the nodes adjacent to the sink, these adja-
cent nodes (the children of the sink in a shortest routing
tree) will consume much more energy than others. Balanc-
ing the load among them is the key to prolonging the
network lifetime. The optimal balancing is obtained if the
number of nodes in the maximum branch (subtree) rooted
at a child node of s, denoted by NMB, is minimized. In order
to formally define the optimization problem dealt with by
this paper, we introduce the following notations and
assumptions.

(a) For simplicity, this paper only takes into account the
energy consumption by each sensor for transmission
and reception. This is because the radio frequency
transmission is the dominant energy consumption
in wireless networks [20]. Let et and er (usually
et > er) denote the amounts of energy consumed
by a sensor node for transmitting and receiving
one bit of data, respectively.

(b) For a given data gathering session, we assume that
the size of sensed data by any sensor is identical to
a fixed length l.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1065

(c) Given a routing tree T rooted at the sink, for each
node v in T, let ndðvÞ denote the number of nodes
in the subtree rooted at v including node v itself.
The amount of energy consumed by node v per data
gathering session ecðvÞ can be calculated by

ecðvÞ ¼ ðndðvÞ % 1Þ & l & er þ ndðvÞ & l & et

¼ l & ðndðvÞ & ðer þ etÞ % erÞ:

Obviously, a node in each data gathering session
consumes more energy than any of its descendants.

(d) Let AdjðsÞ ¼ fv1;v2; . . . ;vdg denote the set of
neighboring nodes of sink s in MðN [fsg; LÞ.
Obviously, these nodes must also be the children
of s in any shortest path tree.

(e) Suppose T is a routing tree. We define
NMBðTÞ ¼maxv2AdjðsÞfndðvÞg, where NMB stands
for the Num-ber of nodes in the Maximum
Branch.

(f) Suppose T is a routing tree. Let node vk 2 AdjðsÞ
be such a child of s, so that ndðvkÞ ¼ maxv2AdjðsÞ

fndðvÞg ¼ NMBðTÞ. Then, ecðvkÞ ¼maxv2N

ecðvÞg. Therefore, the lifetime of MðN [fsg; LÞ
for data gathering can be defined by

LifeðN; L; TÞ ¼ IE
ecðvkÞ

; ð1Þ

where vk 2 AdjðsÞ with ndðvkÞ ¼ NMBðTÞ.

Definition 1. Given a sensor network MðN [fsg; LÞ, the
problem of maximum lifetime shortest routing tree for data
gathering is to construct a shortest path routing tree T
rooted at s such that LifeðN; L; TÞ is maximized, subject to
meeting the assumptions from (a) to (f). We refer to tree T
as the maximum lifetime shortest routing tree.

Clearly, this problem is equivalent to finding a routing
tree T such that NMB(T) is minimized.

3. NP-Hardness

In this section we show that, given a graph
M ¼ ðN [fsg; LÞ, finding the maximum lifetime shortest
routing tree is NP-hard.

Definition 2. An h-layer graph is a graph G(V, E), where the
node set V is partitioned into disjoint subsets,

V0;V1; . . . ;Vh, and the nodes in Vi are in layer i,
0 6 i 6 h. Moreover, V0 ¼ fsg consists of a single node
called the source (or root). A node in layer i;1 6 i 6 h, may
be only adjacent to nodes in layer i% 1 or layer iþ 1. There
are no edges within each layer or connecting nodes of non-
adjacent layers. An h-layer graph, h P 1, is called a multi-
layer graph.

Let distða; bÞ denote the distance from node a to node b
in a graph that is the number of edges used by a shortest
path from a to b. Obviously, in an h-layer graph, Vi consists
of all nodes whose distance to s is i;1 6 i 6 h.

Definition 3. Given a connected graph G(V, E) and a node
s 2 V , its distance graph G0 ¼ ðV 0; E0Þ rooted at s is a
subgraph of G such that V 0 ¼ V and E0 ¼ fðu;vÞjðu;vÞ 2 E
and distðu; sÞ þ 1 ¼ distðv; sÞg.

Obviously, the distance graph GðV 0; E0Þ is a multi-layer
graph that can be easily obtained by performing the
Breadth-first search starting from node s.

Definition 4. Given a connected graph G(V, E) and a node
s 2 V , a spanning tree T rooted at s is called a distance
spanning tree if the length of any path in T from v 2 V to s
is equal to distðv; sÞ.

Definition 5. Given a connected graph G(V, E) and a node
s 2 V , a distance spanning tree T rooted at s is called node
balanced if the value of NMB(T) is minimized.

Obviously, any distance spanning tree in G(V, E) rooted
at s is a subgraph of the distance graph GðV 0; E0Þ of G. It is
also clear that, given a sensor network MðN [fsg; LÞ, any
shortest path routing tree is a distance spanning tree
rooted at s and vice versa. Therefore, following the discus-
sion in Section 2, finding the maximum lifetime shortest
routing tree in MðN [fsg; LÞ is equivalent to finding a node
load-balanced distance spanning tree in its distance graph.
Let us denote this problem by NBDT, namely, the Node Bal-
anced Distance Tree.

Theorem 1. Given a connected graph G(V, E) and a node
s 2 V, the NBDT problem is NP-hard even for the special case
where jAdjðsÞj ¼ 2.

Proof. We reduce the set cover problem [6] to the NBDT
problem. An instance of the set cover problem can be sta-
ted as follows. Given a positive integer k ð6 mÞ and a family
F ¼ fS1; S2; . . . ; Smg of m sets whose union consists of n
different elements, e1; e2; . . . ; en, is there a collection C of
k sets selected from the m sets such that

S
si2CSi ¼

fe1; e2; . . . ; eng?
Let U ¼

S
si2CSi ¼ fe1; e2; . . . ; eng. We now transform this

instance to an instance of the NBDT problem in a 4-layer
graph G whose construction is illustrated in Fig. 1 as
follows.

(1) The layer V1 ¼ fu1;u2g contains two nodes and
both are adjacent to s so that jAdjðsÞj = 2.

(2) For layer V2, we create a node Si for every set
Si in F and connect each of them to both nodes
u1 and u2 by edges ðu1; SiÞ and ðu2; SiÞ;
ð1 6 i 6 mÞ. Moreover, we create mnþ 2k%m
additional nodes for layer V2, and connect each
of them to u2 only.

(3) For layer V3, we create n nodes, e1; e2; . . . ; en,
that correspond to the n different elements in
U. Node ej is connected to node Si in V2 by an
edge ðSi; ejÞ if and only if ej 2 Si;1 6 j 6 n and
1 6 i 6 m.

(4) For layer V4, we create m% 1 nodes for each node
ej 2 V3 and connect each of them to node ej by an
edge, 1 6 j 6 n.

1066 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

The transformation takes polynomial time of n and m.
The number of nodes in G is calculated as follows.

There are two nodes in V1;mnþ 2k nodes in V2;n nodes
in V3, and nðm% 1Þ nodes in V4. Therefore, the total
number of nodes in graph G is 2þmnþ 2kþ
nþ nðm% 1Þ ¼ 2ðmnþ kþ 1Þ. Thus, any distance spanning
tree T must have NMBðTÞP mnþ kþ 1. In the following
we show that there is a solution to the instance of the set
cover problem if and only if there is a distance spanning
tree T in G such that NMBðTÞ ¼ mnþ kþ 1.

We show the only if part first. Suppose there is a
solution to the instance of the set cover problem and C is
the collection of k sets such that

S
Si2CSi ¼ fe1; e2; . . . ; eng.

We construct a distance spanning tree T as follows.

(1) Connect s to u1 and u2.
(2) Connect u1 to Si 2 V2 by edge ðu1; SiÞ if Si 2 C.
(3) Connect u2 to each remaining node in V2. Because

there are m% k sets that are not in C;u2 has
ðm% kÞ þmnþ 2k%mþ 1 ¼ mnþ kþ 1 children,
including u2 itself.

(4) For element ej 2 U, find a set Si 2 C such that ej 2 Si.
Then, connect corresponding node Si 2 V2 to node
ej 2 V3. Because the collection C covers all ele-
ments, this can be done. Obviously, all nodes in
V3 become the descendants of u1.

(5) Include all edges between V3 and V4. All nodes in
V4 become the descendants of u1 in the tree.

Following the above construction, it is clear that each of
the nodes u1 and u2 has exactly mnþ kþ 1 descendants.
Therefore, NMBðTÞ ¼ mnþ kþ 1.

We then show the if part. Suppose there is a distance
spanning tree T such that NMBðTÞ ¼ mnþ kþ 1. Then, the
subtree rooted at u1 must connect to at least k nodes in V2;
otherwise, it would have less than mnþ kþ 1 descendants
even if all nodes in layers V3 and V4 are its descendants.
However, u1 cannot connect to more than k nodes in V2

either. Suppose, for the sake of contradiction, u1 connects
to more than k nodes in V2. To be balanced, the tree rooted
at u2 must contain at least one node x in layer V3, while
node x must connect the ðm% 1Þ nodes in V4 that are
exclusively adjacent to x only. Then, the tree rooted at u2

must have at least 1þ ðmnþ 2k%mÞ þ 1þ 1þ ðm% 1Þ ¼
ðmnþ kþ 1Þ þ ðkþ 1Þ nodes, contradicting that the tree is
balanced. Therefore, in the balanced tree, node u1 must
connect to exactly k nodes in V2. Moreover, the k
nodes must connect to all n nodes in V3 and then all
nodes in V4, in order for u1 to have ðmnþ kþ 1Þ nodes in
its subtree. Obviously, these k nodes in V2 correspond to
the k sets that cover all n elements in U. The theorem then
follows. h

4. Top-down distance tree algorithm

As discussed in Section 2, finding the maximum lifetime
shortest routing tree in MðN [fsg; LÞ is equivalent to find-
ing a node load-balanced distance spanning tree in its dis-
tance graph. For ease of presentation, in this section, the
notation MðN [fsg; LÞ is also used to represent its distance
graph if no ambiguity arises. Denote by Vl the set of nodes
in layer l and El the set of edges between layer l and layer
lþ 1 in MðN [fsg; LÞ. Let Tl be a distance spanning tree up
to layer l and ndlðvkÞ the number of descendants of node vk

in Tl;1 6 l 6 h. Equivalently, Tl can be viewed as the sub-
tree of a distance spanning tree that consists of all nodes
from layer 0 up to layer l.

4.1. A centralized algorithm

Given a distance spanning tree Tl;1 6 l 6 h% 1, we can
extend it to layer lþ 1 by linking each node v 2 Vlþ1 to a
node u 2 Vl through an edge ðu;vÞ 2 El. Starting from T1,
the top-down heuristic uses the network flow technique
to repeatedly and optimally extend tree Tl to
Tlþ1;1 6 l 6 h% 1, until all the nodes in N are included in
the tree.

Definition 6. A distance spanning tree Tlþ1 is said to be
optimally extended from Tl;1 6 l 6 h% 1, if
NMBðTlþ1Þð¼max16k6dfndlþ1ðvkÞgÞ is minimized among
all possible extensions from layer l to layer lþ 1, where
ndlþ1ðvkÞ denotes the number of nodes in the subtree of
Tlþ1 rooted at vk, vk 2 AdjðsÞ; k ¼ 1;2; . . . ; d.

In the following we explain how this heuristic optimally
extends tree Tl to Tlþ1;1 6 l 6 h% 1. Because the network
flow technique is the key technique employed in this algo-
rithm, we first describe how to construct the flow network
according to tree Tl;1 6 l 6 h% 1.

4.1.1. Constructing a flow network N(B) from the given Tl

Let AðvÞ ¼ vk denote that v 2 N is a descendant of
vk 2 AdjðsÞ in Tl, and let Vlþ1 ¼ fx1; x2; . . . ; xmg be the set
of nodes in layer lþ 1. The construction of the flow net-
work N(B) is given below.

As part of N(B), construct a directed bipartite graph G (X,
Y, E), where X ¼ Vlþ1 ¼ fx1; x2; . . . ; xmg;Y ¼ AdjðsÞ ¼

…

S1

s

u1

u2

S2

Sm

e1

e2

en

V0 V1 V2 V3 V4

…
…

mn +2k-m

m-1

m-1

m-1

m-1

Fig. 1. An illustration of the 4-layer graph G transformed from an
instance of the set cover problem.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1067

fv1;v2; . . . ;vdg, and E ¼ fðx;vÞ j x 2 X;v 2 Y ; 9u such that
ðx;uÞ 2 El and AðuÞ ¼ vg, where node v 2 AdjðsÞ is an ances-
tor of node u 2 Vl in Tl. The meaning of edge (x, v) is that x
can become a descendant of v through edge (x, u). There
can be multiple edges from x to different nodes in set Y.
The capacity of every edge in G (X, Y, E) is set 1. Add to
N(B) a source node s' and a directed edge ðs'; xÞ for every
node x 2 X, with capacity cðs'; xÞ ¼ 1. Add to N(B) a direc-
ted edge ðs';vÞ for every node v 2 Y , with capacity
cðs';vkÞ ¼ ndlðvkÞ. Add to N(B) a sink node t and a directed
edge (v, t) for every node v 2 Y , with a capacity cðv ; tÞ ¼ B,
where B is an adjustable integer whose meaning will be
clear later. Fig. 2 shows an example of the construction
of N(B).

Lemma 1. Given a positive integer B as the edge capacity in
N(B) with 1 6 B 6 jNj, there exists a maximum integral flow f
in N(B) that saturates all outgoing edges from s' if and only if
there is a distance spanning tree Tlþ1 extended from Tl such
that max16k6dfndlþ1ðvkÞg 6 B.

Proof. We first show the only if part. Let f be a maximum
flow in N(B) that saturates all outgoing edges from s'.
We can extend Tl in the following way. Because
f ðs'; xiÞ ¼ 1, every node xi must have exactly one outgoing
edge ðxi;vkÞ with flow f ðxi;vkÞ ¼ 1;1 6 k 6 d;1 6 i 6 m.
Since ðxi;vkÞ 2 E, by the construction of N(B), there is a

node u 2 Vl such that ðxi;uÞ 2 El and AðuÞ ¼ vk. We thus
connect xi to node u in Tlþ1. Obviously, xi becomes a
descendant of vk through edge ðxi; uÞ. By doing so, we con-
nect every xi 2 Vlþ1;1 6 i 6 m, to a node in Vl, which effec-
tively extends Tl to Tlþ1. Moreover, for each node
vk;1 6 k 6 d, we have f ðvk; tÞ ¼

Pm
i¼1f ðxi;vkÞ þ f ðs';vkÞ.

Because
Pm

i¼1f ðxi;vkÞ is equal to the number of nodes in
layer lþ 1 that become new descendants of vk and
f ðs';vkÞ ¼ ndlðvkÞ is the number of descendants of vk from
layer 1 to layer l, we have f ðvk; tÞ ¼ ndlþ1ðvkÞ in the
extended Tlþ1. Therefore, ndlþ1ðvkÞ ¼ f ðvk; tÞ 6 B.

We then prove the if part. Suppose Tlþ1 is a distance
spanning tree extended from Tl such that
max16k6dfndlþ1ðvkÞg 6 B. According to Tlþ1, we assign a
flow f in N(B) as follows: assign f ðs'; xiÞ 1 and
f ðxi; vkÞ 1 if xi is connected to a node u 2 Vl in Tlþ1 and
AðuÞ ¼ vk; assign f ðs';vkÞ ndlðvkÞ and
f ðvk; tÞ ndlþ1ðvkÞ; and assign all other edges with zero
flow, 1 6 i 6 m and 1 6 k 6 d. Obviously, this flow assign-
ment saturates all outgoing edges from s', and because
max16k6dfndlþ1ðvkÞg 6 B, the amount of flow assigned on
any edge is no greater than its capacity. Moreover, only if xi

is a descendant of vk in Tlþ1, then we assign f ðxi;vkÞ ¼ 1;
otherwise f ðxi;vkÞ ¼ 0. So,

Pm
i¼1f ðxi;vkÞ is equal to the

number of newly added descendants from layer lþ 1 to vk.
Therefore, we have

f ðvk; tÞ ¼ ndlþ1ðvkÞ ¼
Xm

i¼1

f ðxi;vkÞ þ ndlðvkÞ

¼
Xm

i¼1

f ðxi;vkÞ þ f ðs';vkÞ:
ð2Þ

Thus, at any node except s' and t, the total incoming flow is
equal to the total outgoing flow. Therefore, the assigned
flow is a valid flow and it saturates all outgoing edges from
s'. Lemma 1 then follows. h

Corollary 1. Finding an optimally extended distance span-
ning tree Tlþ1 from tree Tl is equivalent to finding a minimum
integer B in the flow network N(B) such that a maximum flow
can saturate all outgoing edges from s';1 6 B 6 jNj.

Proof. This corollary follows Lemma 1, omitted. h

We now determine the minimum integer B in the flow
network N(B) such that a maximum flow can saturate all
outgoing edges from s'. Following the construction of N
(B), to saturate all outgoing edges from s' in N(B), there is
such an integer B that satisfies the following inequality
for a flow f:

max
16k6d

fndlðvkÞg 6 B 6 max
16k6d

fndlðvkÞgþm;

where m ¼ jVlþ1j. The smallest value of B can be found
by algorithm Smallest_B using binary search as
follows.

Algorithm 1. Smallest_B(NðBÞ; Tl;m)

Fig. 2. An illustration of the construction of flow network N(B).

1068 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

1: lower bound max16k6dfndlðvkÞg;
/* This was known when Tl was produced */

2: upper bound lower boundþm;
3: c

Pd
i¼1ndlðvkÞ;/* The total capacity on all of

ðs';vkÞ;1 6 k 6 d */
4: whilelower bound – upper bounddo 5:

b bupper boundþlower bound
2 c;

6: B b /* Set B = b in N(B) */;
7: Find a max flow f in N(B) from s' to t;
8: if jf j ¼ mþ cthen
9: /* f saturates all out edges from s' */
10: upper bound b;
11: else
12: lower bound bþ 1;
13: end if
14: end while
15: B upper bound;
16: return B.

Theorem 2. Algorithm Smallest-B correctly finds the small-
est integer B for the flow network N(B) such that the maxi-
mum flow saturates all outgoing edges from s'.

Proof. It is clear that the value of the smallest B in N(B) is
between the initial lower bound and the upper bound,
namely, max16k6dfndlðvkÞg 6 B 6 mþmax16k6dfndlðvkÞg.
The while loop in the Smallest_B algorithm reduces the
searching space by at least a half after each iteration, but
guarantees that the smallest B is still within the reduced
interval. Therefore, when the length of the interval
becomes 0, the smallest B is found. h

4.1.2. The top-down distance tree algorithm
The following top-down distance tree heuristic algo-

rithm constructs a distance spanning tree by repeating
optimal layer extensions until all the nodes in N are in-
cluded in the tree.

Algorithm 2. Top-down-distance-treeðMðN [fsg; LÞÞ

1: Construct the tree T1 by including all edges of
ðs;vkÞ;1 6 k 6 d;

2: for l 1 to h% 1 do
3: Construct the network graph N(B) having Tl; El

and Vlþ1;
4: m jVlþ1j;
5: Smallest_B ðNðBÞ; Tl;mÞ;
6: Find a maximum flow f in N(B) from s' to t;
7: Convert the flow f to Vlþ1 according to steps given

by Lemma 1.
8: end for

The correctness of algorithm Top-down-distance-
tree is obvious. In the rest of this paper, we refer to this
algorithm as the ‘top-down’ algorithm for short.

4.2. Overview of the distributed implementation

We assume that the sensor network is a synchronous
network, in which each node starts a message transmission
in the beginning of a time unit, and finishes the transmis-
sion at the end of the time unit. All local computation can
be done in the same time unit as well. In other words, we
assume that local computation takes no time.

The distributed implementation of the ‘top-down’ algo-
rithm consists of h% 1 iterations. Within each iteration, it
extends the current tree one layer further. We now con-
sider one layer expansion by considering a subgraph
Gl;lþ1 ¼ ðVl [Vlþ1; ðVl (Vlþ1Þ \ LÞ. Note that Gl;lþ1 may not
be connected. The flow network N0ðBÞ ¼ ðVl [Vlþ1 [V1; E0Þ
based on Gl;lþ1 is constructed as follows. There is a source
s' and a destination t in N0ðBÞ such that s' connects to all
nodes in Vlþ1 while all nodes v i 2 V1 ð¼ AdjðsÞÞ connect
to node t, there is a directed edge from a node y 2 Vl to a
node v i 2 V1 if y is a descendant of v i in Tl and the capacity
of the edge is assigned as B% ndlðv iÞ. Meanwhile, the
capacity of each edge from a node v 2 V1 to t is assigned
an integer B% ndlðvÞ and the capacity of each edge from
s' to x 2 Vlþ1 is assigned an integer 1. Each edge (u,v) from
a node u 2 Vlþ1 to a node v 2 Vl in ðVl (Vlþ1Þ \ L is as-
signed capacity of 1. The task is to find a maximum flow
from s' to t distributively to saturate all edges starting from
s'. Clearly, the flow network N0ðBÞ is equivalent to N(B) de-
fined in the previous section. We first embed the graph
N0ðBÞ into the communication network MðN [fsg; LÞ as fol-
lows. The subgraph Gl;lþ1 can be embedded into the original
sensor network M easily. We embed each edge from a node
y 2 Vl to a node v 2 V1 into node y and each edge from
v 2 V1 to the virtual node t into node v. Similarly we
embed each edge from the virtual node s' to a node
x 2 Vlþ1 into node x, and embed the virtual node t into
the base station.

To simulate an edge in N0ðBÞ from a node y 2 Vl to
v 2 V1 (or t), or from s' to a node x 2 Vlþ1 in the real com-
munication topology M, we use the unique path in the par-
tial BFS tree TBFS

l or TBFS
lþ1 for such a propose. Thus, although

Gl;lþ1 may not be connected, the messages sent by the
nodes in it can be collected, using trees TBFS

l or TBFS
lþ1. In other

words, each message transfer between two neighboring
nodes in N0ðBÞ can be emulated at most in OðlÞ time with
OðlÞ messages along the unique path in the partial tree
TBFS

l or TBFS
lþ1. The distributed implementation is that each

child v 2 AdjðsÞ of the root s broadcasts its identity and
its number of descendants ndlðvÞ to its descendants in Vl

using TBFS
l . Thus, each node in Vl is labeled with one of

the children of node s. Consequently, if finding a maximum
flow in network N0ðBÞ from s' to t takes Oðtl;lþ1Þ time and
Oðml;lþ1Þ messages, it takes Oðl & tl;lþ1Þ time and Oðl &ml;lþ1Þ
messages in the original communication network
MðN [fsg; LÞ.

4.3. Distributed implementation

We here give a distributed implementation of the pro-
posed ‘top-down’ algorithm, and we state the result by
the following theorem.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1069

Theorem 3. Given a wireless sensor network
M ¼ ðN [fsg; LÞ, there is a distributed implementation of
the ‘top-down’ algorithm for finding a maximum lifetime
shortest routing tree, which takes Oðh & jNj2 & log jNjÞ time and
uses OðjNj2 & jLjÞ messages.

Proof. Given the communication network MðN [fsg; LÞ,
the distributed construction of a BFS tree in M rooted at
the base station takes OðhÞ time and OðjLjþ jNj1:6Þ mes-
sages by a distributed algorithm in [1], where h is the
depth of the BFS tree. The construction of flow network
N0ðBÞ and its embedding to the communication network
M takes OðjNjÞ time and OðjLjÞmessages because the degree
of each node is no more than jNj. Finding a maximum flow
from s' to t in N0ðBÞ takes Oðtl;lþ1Þ ¼ OððjVljþ jVlþ1jÞ2Þ time
and uses Oðml;lþ1Þ ¼ OððjVljþ jVlþ1jÞ2 & jðVl (Vlþ1Þ \ LjÞ
messages by Goldberg and Tarjan’s distributed algorithm
[8], while it takes Oðn02Þ time and uses Oðn02m0Þ messages
in a graph with n0 nodes and m0 edges (see Th. 6.3 in [8]).
Following algorithm Smallest_B, there are at most
dlog Be calling of the s-t maximum flow algorithm in order
to find a load-balanced matching for all nodes in Vlþ1 and
1 6 B 6 jNj. Thus, each layer extension of the routing tree
in the original sensor network M takes Oðl & log jNj & tl;lþ1Þ
time and uses Oðl & log jNj &ml;lþ1Þ messages.

The algorithm for finding a maximum lifetime shortest
routing tree needs h% 1 iterations, the total time for the
routing tree construction thus is

Ph%1
l¼1 Oðl & log jNj

&tl;lþ1Þ ¼ Oðh & jNj2 & log jNjÞ and the number of messages
used is

Ph%1
l¼1 Oðl & log jNj &ml;lþ1Þ ¼ OðjNj2 & jLj & log jNjÞ. The

theorem then follows. h

5. The balance-refine algorithm

Although the ‘top-down’ algorithm constructs a load-
balanced spanning tree optimally layer by layer, the bal-
ance load (NMB) of the tree could be further improved.
Fig. 3 shows such an example, where the sink has two chil-
dren A and B in layer 1, and both A and B connect to 4
nodes, c, d, e, f in layer 2. So, the ‘top-down’ algorithm ex-
tends the tree to layer 2 by assigning nodes c and e to A and
nodes d and f to B. It is a perfectly balanced tree up to layer
2. However, if node c and e can reach many nodes below
layer 2, but nodes d and f connect to no nodes below layer
2 at all, then the result will be an unbalanced tree shown in
Fig. 3c. This is because the ‘top-down’ algorithm has no
way to use the connection information below the layer it
is dealing with within each iteration.

In this section, we introduce a distributed balance-refine
algorithm to refine the tree produced by the ‘top-down’
algorithm, layer by layer, through changing the connection
between two adjacent layers such that the load balance
among the children of the root can be further improved.
Specifically, for layer l and layer lþ 1 (1 6 l 6 h% 1), we
first remove all the edges between these two layers in
the current tree so that the tree is partitioned into two
parts, the upper part is the tree containing all nodes up
to layer l, and the lower part consists of a set of subtrees
whose roots are the nodes in layer lþ 1. As an example,
Fig. 4a shows the two parts after removing all tree edges
between layers 1 and 2 of the spanning tree of Fig. 3c. After
removing these edges, we re-connect the two parts into a
new tree using all available edges in the set
El ¼ ðVl (Vlþ1Þ \ L that includes previously non-tree edges
as well as tree edges, such that the new tree has a better
load balance. Fig. 4b shows a possible result by re-connect-
ing the two parts of Fig. 4a which has a better load balance.

Note that the removing and re-connecting procedure on
two adjacent layers is essentially different from expanding
the current tree to include the nodes in one more layer. Be-
cause the lower part includes the subtrees rooted at the
nodes in the next layer, and different subtrees contain dif-
ferent numbers of nodes, finding an optimal connection
such that the new tree has the smallest NMB number be-
comes difficult and can be easily shown to be NP-complete.

5.1. Modeling of the re-connecting problem

Recall that V1 ¼ AdjðsÞ ¼ fv1;v2; . . . ;vdg. We aim to re-
connect layer l and layer lþ 1 ð1 6 l 6 h% 1Þ of the current
tree such that the NMBðTÞ ¼maxv i2V1fndðv iÞg in the new
tree T is improved, where ndðv iÞ is the number of nodes
in the branch rooted at v i. To help readers understand
the following distributed algorithm, we use a daily life
example – the school admission process as an illustration
of the proposed distributed algorithm.

We view the subtree rooted at v i as a college i
ð1 6 i 6 dÞ and the nodes in this subtree as the students
admitted to this college. The node v i plays the role of
admission officer. A node y in layer l is considered to be a
recruiter for college i if y belongs the subtree rooted at
v i. Since we have removed the edge connections between
layer l and layer lþ 1, the tree in the upper part represents

Fig. 4. An illustration of reconnecting layers 1 and 2 of the tree in Fig. 3c.
Fig. 3. An example of the spanning tree constructed by the ‘top-down’
algorithm that needs an improvement.

1070 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

the current enrollments to the d colleges. Connecting a
subtree rooted at node x in layer lþ 1 to a node y in layer
l is equivalent to admitting all students in the subtree of x
to the college where the node y belongs to. Our objective is
to make the enrollments among d colleges to be balanced
as much as possible. The decision on whether to admit stu-
dents of a subtree is not made by the recruiter but by the
admission officer only. This is because there may be many
recruiters for the same college and they have no way to
communicate directly with each other. We can expect that
a recruiter passes an application from a subtree to its
branch root (admission officer) and gets a reply back in ex-
actly 2l time units, assuming that it takes one unit time for
a node to send a message to a neighboring node. Fig. 5
illustrates this model by an example. Note that a college
does not admit students individually but admits students
in groups. The links (edges) between layer l and layer
lþ 1 define all possible ways that student groups can apply
for colleges. It is very likely that a student group (a subtree)
may have links to multiple recruiters of the same college.
For example, in Fig. 5, u3 has links to B2 and B3, two recruit-
ers for college B. In this case, the student group chooses ex-
actly one recruiter to communicate with.

5.2. A distributed algorithm for re-connecting two layers

In this subsection, we present a distributed algorithm
for re-connecting layer l and layer lþ 1 (1 6 l 6 h% 1).
For the sake of convenience, we make the following rea-
sonable assumptions.

(1) Each college admission officer knows the num-
ber of students that have been recruited by the
college in the upper part. A variable
enrollmentðiÞ is used to denote the enrolled num-
ber of students in college i, which is updated
immediately whenever the college has admitted
new students.

(2) There are kð¼ jVlþ1jÞ subtrees in the lower part
whose roots are u1;u2; . . . ;uk. We also assume
that subtree rooted at uj has sj students,
1 6 j 6 k, and node uj knows the value sj.

(3) The communication between a recruiter of a col-
lege and its admission officer is through a mes-
sage which is forwarded by the unique path in
the tree of the upper part between them.

(4) In case a student group has links to multiple
recruiters of the same college, one of the recruit-
ers is chosen to pass the message between the
student group and the admission officer of that
college, and the other recruiters do not commu-
nicate with the student group.

Having the above assumptions, it can be seen that there
are exactly l time units used for one-way transmission be-
tween a student group and a college admission officer, and
2l time units for a round trip communication. Now, we are
ready to introduce the re-connection algorithm consisting
of the following three stages.

5.2.1. The first stage – start stage
The re-connection procedure starts when the sink sends

a message start(nmb, layer l) to nodes in
V1 ¼ fv1;v2; . . . ;vdg, where nmb is the NMB value of the
current spanning tree which is to be improved. Upon
receiving the message, each node v i, the admission officer
for college i, broadcasts a message recruit(nmb, layer
l; enrollmentðiÞ, college i) to its recruiters, 1 6 i 6 d. Then,
each recruiter of college i broadcasts this message to all
student groups the recruiter is responsible to communicate
with. After receiving this message, each node enters the
second stage.

5.2.2. The second stage – admission stage
In this stage, each student group applies to a college and

the college selects only one student group to admit, and
this interaction will repeat in every 2l time units until all
student groups are admitted or one student group sends
an abort message. The detailed description of this stage is
as follows.

First, each student group uj takes the following actions,
1 6 j 6 k ¼ jVlþ1j.
(1) Upon receiving all recruit(nmb, layer l; enrollmentðiÞ,

college i) messages, it updates its local variable
enrollmentðiÞ. If uj has not been admitted by any col-
lege, then it does the following:
(a) Compute Dij ¼ enrollmentðiÞ þ sj. A college i is

qualified to be considered by uj if Dij 6 nmb;
(b) If no college is qualified, then send an abort mes-

sage to a recruiter of college i and stop communi-
cation until the third stage;

(c) If one or more colleges is qualified, find the one
with the minimum Dij, and send a message
applyðcollegei; groupj;Dij;urgentÞ to the recruiter
of college i, where urgent is a boolean variable
which will be ‘true’ if only college i is qualified;

(2) Upon receiving a termination message, it enters the
third stage;

(3) Upon receiving an abort message, it resets the parent
of ui to be the initial parent, and then enters the third
stage;

(4) Upon receiving an admitted message from college i, it
does the following:Fig. 5. An illustration of the college admission modeling.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1071

(a) Send a message done to all recruiters that
node uj communicates with;

(b) Connect uj to the recruiter of college i. The
recruiter node becomes the parent of uj in
the new tree.

Second, the main role of each recruiter in layer l is to
pass messages between the college admission officer and
students groups. Additional actions taken by a recruiter
for college i;1 6 j 6 d, are:

(1) Upon receiving the done message from a student
group uj, it stops communication with uj until
the third stage;

(2) Upon receiving done messages from all student
groups with which the recruiter is responsible
for communication, it sends a done message to
college admission officer v i.

Third, each college admission officer v i;1 6 i 6 d, takes
following actions.

(1) Upon receiving all apply messages, it admits
those student groups whose parameter urgent
in its apply message is ‘true’, and update local
variable enrollmentðiÞ. If enrollmentðiÞ > nmb,
then it sends an abort message to the sink and
stops communication until the third stage.
Otherwise, it sends a message admit-
ted(enrollmentðiÞ, college i, group j) to each
admitted applicant uj;

(2) For each student group application with the
message apply(college i, group
j;Dij;urgent ¼ ‘false0), it does the following:
(a) Find a student group uj with the largest Dij

and Dij 6 nmb;
(b) Update local variable enrollmentðiÞ Dij;
(c) Send a message admitted(enrollmentðiÞ,

college i, group j) to student group uj;
(d) Broadcast a message recruit(nmb, layer l,

enrollmentðiÞ, college i) to all recruiters;

(3) Upon receiving any abort message from a stu-
dent group, it forwards it to the sink and stop
communication until the third stage;

(4) Upon receiving done messages from all recruit-
ers, it sends a doneðenrollmentðiÞÞ message to
the sink.

Finally, the sink (the tree root) takes the following
actions.

(1) Upon receiving an abort message from any
v i;1 6 i 6 d, it broadcasts an abort message to
all student groups through its recruiters along
the tree paths;

(2) Upon receiving doneðenrollmentðiÞÞ messages
from all v i, it updates the value of nmb to be
max16j6dfenrollmentðjÞg;1 6 i 6 d, and broad-
casts a message terminationðnmbÞ to all recruit-
ers and student groups.

Note that a college admission officer does not need to
send a denial message to a student group applicant. This
implies that if a student group does not receive an admitted
message in 2l time units and this group can apply to

another college in the next round once it receives a new re-
cruit message.

5.2.3. The third stage – transfer stage
The admission stage ends with either a termination

message or an abort message from the sink. If it is the for-
mer, a student group is assigned to a new parent which
may be different from the one prior to the reconnection;
otherwise, every student keeps the original parent. In
either case, the third stage gives each student group a
chance to change its parent node, that is, to transfer to an-
other college if this leads to an improvement on the bal-
ance of enrollment, or keep as is. The detailed
explanation of this stage consisting of three steps is as
follows.

In the first step, each student group uj;1 6 j 6 k, identi-
fies a college i from all communicating colleges that has
the smallest value of enrollmentðiÞ. Suppose uj currently
enrolls in college i0. Let Dij ¼ enrollmentðiÞ þ sj. If i – i0,
then student group uj sends a transfer request trans-
fer(enrollmentði0Þ, college i, group j;Dij) to college i.

In the second step, upon having received all transfer
messages, each admission officer v i;1 6 i 6 d, identifies a
transfer message with the largest Dij but Dij 6 nmb, accepts
the transfer, updates local variable
enrollmentðiÞ enrollmentðiÞ þ Dij, and sends a message
admitted(enrollmentðiÞ, college i, group j) to uj.

In the third step, each student group informs its previ-
ous college if it has been transferred to another college.
Each college admission officer then updates its college
enrollment accordingly and notifies the sink. Finally, the
sink computes the new nmb value and broadcasts it to
the entire tree.

For convenience, we will also refer to the balance-re-
fine algorithm as ‘refinement’ for short.

5.3. Correctness and termination

The proposed distributed algorithm for re-connecting
two adjacent layers forms the base of algorithm bal-
ance-refine that consists of h% 1 iterations, and the dis-
tributed algorithm for reconnecting two adjacent layers is
invoked within each iteration.

The correctness of the proposed distributed algorithm is
obvious. The rest is to show that it will terminate. Clearly,
it will terminate at its first stage - the ‘‘start’’ stage, and
second stage - the ‘‘transfer’’ stage. We now show that it
will terminate in its last stage - the ‘‘admission’’ stage, too.

Lemma 2. The admission stage of the distributed algorithm
either terminates or aborts within no more than k rounds,
where k ¼ jVlþ1j is the number of student groups with roots at
layer lþ 1;1 6 l 6 h% 1.

Proof. According to the proposed distributed algorithm,
within each round, a college admission officer either
receives no applications and so admits no student group,
or accepts at least one student group. Therefore, in each
round of recruiting, if student group j does not receive
any admitted message from college i it applied to, then

1072 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

there must be at least one student group other than group j
that has been accepted by college i in this round. Since
there are only k student groups, one student group cannot
be denied by more than k% 1 times. Therefore, within k
rounds, the admission stage will either terminate with all
student groups admitted or abort without admitting any
student groups. h

Theorem 4. Given a shortest distance routing tree, the time
and message complexities of the balance-refine algo-
rithm are OðhnÞ and Oðhn2Þ respectively, where h is the height
of the tree and n ¼ jNj is the number of sensor nodes in the
network MðN [fsg; LÞ.

Proof. The number of iterations in algorithm balance-
refine is h% 1. The time complexity of each iteration is
dominated by the admission stage. According to Lemma
2, there are at most k rounds and each rounds cost 2l time
units. The time complexity of the balance-refine algo-
rithm thus is

Ph%1
i¼1 Oði niÞ 6 h

Ph%1
i¼1 OðniÞ 6 OðhnÞ, where

ni ¼ jVij.
The message complexity is dominated by the admission

stage of the re-connecting procedure. Following Lemma 2,
in the admission stage of reconnecting layer l and layer lþ 1
ð1 6 l 6 h% 1Þ, there are at most k rounds of recruiting,
while in each round at most k apply messages are sent.
Every apply message is transmitted to a college admission
officer through l-hop relays and then is responded by
either an admitted message or a new recruit message. Thus,
the message complexity related to apply messages is
Oðk2lÞ. The other message complexity related to recurit
messages, whenever a college admission officer accepts a
student group, the value of enrollmentðiÞ increases, it then
broadcasts this updated value to all student groups. The
message complexity related to recurit messages thus is
Oðk2lÞ, too. Therefore, the message complexity within each
iteration is Oðk2lÞ. The number of messages required by the
balance-refine algorithm isPh%1

i¼1 Oði n2
i Þ 6 h

Ph%1
i¼1 Oðn2

i Þ 6 Oðhn2Þ. h

6. Performance evaluation

In this section we evaluate the performance of proposed
algorithm in terms of NMB and the network lifetime,
through experimental simulations. We also investigate
the impact of several network parameters, such as network
density, network size, and the location of the sink on the
performance by the simulations. We refer the proposed
algorithm as ‘top-down with refinement’ algorithm,
since it invoke two algorithms: ‘top-down’ and
‘refinement’.

In a default setting, we consider a sensor network con-
sisting of 100–450 sensors randomly deployed in a
200 m (200 m square region with the sink randomly de-
ployed in a centered square area of 200/3 m (200/3 m.
We also consider the other cases in which sensors are ran-
domly distributed in a square area with the length of each
side ranging from 100 m to 300 m with an increment of
50 m while keeping the node density unchanged. We as-

sume that all sensors are identical, this implies that every
sensor has the same initial energy capacity of 0.5 J, an iden-
tical transmission radius of R = 30 m, and the same sam-
pling rate. Within each session each sensor sends the
same amount of sensed data (80 bits) to the sink without
any aggregation. As mentioned in Section 2, the dominant
energy consumption in wireless networks is the radio com-
munication, we focus on the communication energy con-
sumption by ignoring the other energy consumptions.
The amounts of energy consumed by a sensor for transmit-
ting or receiving 1-bit data are computed as follows [9]:

et ¼ aþ bR2; ð3Þ
er ¼ c; ð4Þ

where R is the transmission radius, a ¼ 45(10%9 J=
bit; b ¼ 10(10%12 J=bit=m2, and c ¼ 135(10%9 J=bit [9].
The value in each figure is the mean of the simulation re-
sults of 200 random network topology instances.

To evaluate the performance of the proposed algo-
rithms, an existing ‘node-centric’ algorithm in [4] is em-
ployed as our benchmark, where the ‘node-centric’
algorithm proceeds iteratively. Initially, the tree contains
the only the root, i.e., the sink. Within each iteration, it first
selects a branch with the lightest load, and then grafts onto
this branch the unassigned/unmarked border node gener-
ating the heaviest load. Notice that the ‘node-centric’ algo-
rithm focuses only on the load balance among the nodes
without incorporating the constraint of the distance from
each node to the sink. Also, it must be mentioned that
the performance comparison between the proposed algo-
rithm and the ‘node-centric’ algorithm is unfair, because
the latter does not guarantee the shortest path routing,
and may produce a very ‘slim’ tree to achieve load balance.
The purpose of making use of such a comparison is to ob-
serve the difference and the trade-off between load bal-
ance and data routing delay in the routing trees delivered
by both algorithms.

6.1. A Lower bound

In this subsection, we will establish a lower bound on
NMB and use this lower bound to evaluate the performance
of our algorithm. A trivial lower bound on NMB is jNj=jV1j,
where V1 ¼ AdjðsÞ is the set of nodes forwarding sensed
data to the sink directly. Obviously, no solution could be
better than this bound. This lower bound however is too
loose and may be far below any optimal solution. We ob-
serve that if all routing paths must be shortest, some nodes
may only be able to reach one particular branch node x in
V1 by this requirement. Based on this observation, for each
node x 2 V1, we define a set UðxÞ ¼ fv j v 2 N, and v can
only reach x 2 V1 by any shortest path}. Since
NMBðTÞP maxx2V1fjUðxÞjg for any routing tree
T;maxx2V1fjUðxÞjg can be used as another lower bound on
NMB. We now generalize this idea further. Let P be any
subset of V1, define QðPÞ to be the set of nodes in M that
can only reach the nodes in P by any shortest routing,
i.e., QðPÞ ¼ fv j v 2 N, and v can only reach one or more
nodes in P by a shortest path}. Then, for any routing tree
T;NMBðTÞP jQðPÞj

jPj . Since we could not exhaust all possible

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1073

sets of P, we will select a few of them in our simulations as
follows.

We first compute the coordinates ðhv ; rv Þ of each node
v 2 V1 in a polar coordinate system with node s being
the center, where hv is the positive angle from the horizon-
tal line ðs;þ1Þ and rv is the distance between s and v.
Then, for each vk 2 V1;1 6 k 6 d, we compute a set Pk

where Pk ¼ fv j v 2 V1 and ðhvk 6 hv < hvk þ 45)Þ and
rv > 1

2 Rg. In other words, Pk is the set of nodes in V1 that
are within the sector of 45) from vk and R=2 away from
the sink. Now, another lower bound on NMB(T) is derived,
which is max16k6dfjQðPkÞj

jPk j
g. Since the optimal value of

NMB(T) will above any lower bound, we use the largest
one among these three lower bounds as the benchmark
to measure how close between the results produced by
our algorithms and the achievable optimal results. That
is, the following lower bound will be used:
LBðMÞ ¼maxf jNjjV1 j

;maxx2V1fjUðxÞjg;max16k6dfjQðPkÞj
jPk j
gg.

6.2. Balanced trees delivered by different algorithms

We first observe the differences between balanced rout-
ing trees produced by the ‘top-down with refinement’

algorithm and by the ‘node-centric’ algorithm through a
concrete example. Fig. 6a shows a randomly generated
sensor network and Fig. 6b is the distance graph of the net-
work. The sink is marked by a small circle. Fig. 6c and d are
the routing trees produced by the ‘node-centric’ and our
algorithm respectively, from which it can be seen that
the tree produced by the ‘node-centric’ is more balanced
among its branches, however the shape of the tree is ‘slim’,
and quite a few nodes in it have long paths to reach the
sink. While the tree produced by the proposed algorithm
is ‘fat’, although slightly less balanced, but it allows every
node to reach the sink along the shortest path from the
node.

As shown by Fig. 7, the average message latency in the
routing tree produced by the ‘node-centric’ algorithm is
much longer than that in the routing tree by our proposed
algorithm. Moreover, the gap of the average message delay
between them increases with the growth of the node den-
sity. In fact, the trees produced by the ‘top-down’ algo-
rithm with or without balance refinement guarantee the
routing path from each node to the sink is the shortest
one. Also, the one with load-balance refinement has a

−100 −50 0 50 100
−100

−50

0

50

100

(a) The original sensor network M
−100 −50 0 50 100

−100

−50

0

50

100

(b) The distance graph of M

−100 −50 0 50 100
−100

−50

0

50

100

(c) The balance tree produced
by the node-centric heuristic

−100 −50 0 50 100
−100

−50

0

50

100

(d) The balance tree produced
by

Fig. 6. The load-balanced trees produced by different algorithms in a sensor network of 150 nodes randomly deployed in a 200 m (200 m square region.

1074 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

much better load balance, which can be observed from
Fig. 8.

Fig. 8 plots the value curves of NMB of different algo-
rithms for networks deployed in a 200 m (200 m square
region with different node densities, from which it can be
seen that the ‘top-down with refinement’ algorithm out-
performs the ‘top-down’ algorithm significantly. The curve
of the ‘top-down with refinement’ is parallel to the curve of
the lower bound, which means its performance is stable.
Since the curve of the optimal solution lies inside the
gap, our solution is less than six nodes from the optimal
solution. In contrast, the NMB obtained by the ‘node-cen-
tric’ algorithm tends to be worse with the growth of net-
work size. Notice that the value of NMB(T) of a tree T
delivered by the ‘node-centric’ algorithm may even below
the lower bound, because the tree is not necessarily to be a

shortest one. However, as seen from Fig. 8, NMB(T) of the
‘node-centric’ algorithm becomes worsen when the node
density reaches 300 or above.

6.3. Evaluation of network lifetime of different routing trees by
different algorithms

We then study the performance of the ‘top-down’ algo-
rithm and the ‘top-down’ algorithm with balance refine-
ment against an upper bound on the maximum network
lifetime defined in Section 2.

Since the network lifetime is inversely proportional to
the value of NMB, then a lower bound of NMB can be con-
verted to an upper bound on the maximum network life-
time, and this upper bound is obviously larger than the
maximum network lifetime. Table 1 illustrates the net-

Fig. 7. The average message latency between any node and the sink in a
spanning routing tree for a sensor network deployed within a
200 m (200 m square.

Fig. 8. The size of the largest branch of balanced trees (NMB) delivered by
different algorithms for networks deployed in a 200 m (200 m square
with different node densities.

Table 1
The network lifetime delivered by different algorithms in a deployed network in a 200 m (200 m square region with various node densities.

Algorithm Number of nodes

100 150 200 250 300 350 400 450

Top down 800 822 819 828 857 855 866 878
Top down with refinement 908 1054 1119 1130 1207 1209 1227 1253
Upper bound 1057 1222 1282 1307 1427 1430 1451 1491

Fig. 9. The ratio of achieved network lifetime over its upper bound in a
sensor network deployed in a 200 m (200 m square region with various
node densities.

Fig. 10. The network lifetime delivered by the ’top-down’ algorithm with
balance refinement and its ratio to the upper bound for sensor networks
deployed in a 200 m (200 m square with different node densities, where
the sink is located at one of the four corners.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1075

work lifetimes achieved by different algorithms in the
same sensor network, in comparison with an upper bound
on the maximum network lifetime.

Fig. 9 demonstrates that the ’top-down’ algorithm with
load balance refinement can achieve a network lifetime no
less than 85% of the maximum possible one (the upper
bound on the maximum network lifetime). As the best
achievable network lifetime for the network is in the mid-
dle of the gap, the proposed algorithm may achieve 92% of
the maximum network lifetime.

Extensive simulations have also been conducted to
evaluate the network lifetime when the sink is located at
one of the four corners, rather than at the center of the
monitoring area. Because of symmetry, we assume that
the sink is located at the most upright corner in our exper-
iments. Fig. 10 shows that the network lifetime delivered
by the ‘top-down’ algorithm with balance refinement
achieves 86% of the upper bound of the maximum network
lifetime.

We finally evaluate the performance of our proposed
algorithm by varying the network size while keeping the
node density fixed at 1=200ðnode=m2Þ. The performance
of the ‘top-down’ algorithm with load-balance refinement
is shown in Fig. 11, from which it can be seen that with
the increase of the square size, the achieved network life-
time decreases. The figure also shows that the ‘top-down’
algorithm with load-balance refinement always delivers a
solution that is very close to the upper bound of the max-
imum network lifetime, i.e., the network lifetime delivered
by it is no less than 82% of the optimal one.

7. Conclusion and future work

In this paper we studied the network lifetime maximi-
zation problem for time-sensitive data gathering applica-
tions, through constructing a load-balanced shortest
distance routing tree. We first formulated the problem as
an optimization problem and showed its NP-hardness.
We then devised a novel ‘top-down’ algorithm that con-
structs a balanced shortest distance routing tree layer by
layer, and each layer extension is optimal from the current

tree. A distributed implementation of the ‘top-down’ algo-
rithm has also been given. To further improve the perfor-
mance of the ‘top-down’ algorithm, we proposed a
‘balance-refine’ distributed algorithm. Finally, we con-
ducted extensive simulations to evaluate the performance
of the proposed algorithms. The simulation results have
shown that the network lifetime delivered by the ‘top-
down’ algorithm with balance refinement is no less than
85% of the optimal network lifetime.

There are several interesting directions for future
works. For example, designing an approximation algo-
rithms to construct the balanced shortest path (routing)
tree, which may have potential applications in many other
research area; considering building the balanced shortest
routing tree for sensor networks in which sensors are of
non-uniform energy levels; relaxation of shortest path
constraints, that is sacrificing message delays from a small
portion of nodes to improve the balance of the routing tree
and time complexity of the algorithm.

Acknowledgments

The authors would like to thank the anonymous refer-
ees and the editor for their constructive comments and
valuable suggestions which have helped improve the
quality and presentation of the paper. The work of
Feng Shan was done during his visit to University of
Missouri-Kansas City, USA. His research is supported by
National Key Basic Research Program of China under
Grants No. 2010CB328104, China Scholarship Council,
NSFC under Grants No. 61070161, No. 61003257, No.
61202449, No. 61272531, No. 61272054, China National
Key Technology R&D Program under Grants No.
2010BAI88B03 and No. 2011BAK21B02, SRFDP under
Grants No. 20110092130002, China National Science and
Technology Major Project under Grants No.
2010ZX01044-001-001. Jiangsu Provincial Key Laboratory
of Network and Information Security under Grants No.
BM2003201.

References

[1] B. Awerbuch, R.G. Gallager, A new distributed algorithm to find
breadth first search trees, IEEE Transactions on Information Theory
IT-33 (1987) 315–322.

[2] C. Buragohain, D. Agrawal, S. Suri, Power aware routing for sensor
databases, in: Proceedings of INFOCOM’05, IEEE, 2005.

[3] R. Cristescu, B. Beferull-Lonzano, M. Vetterli, On network correlated
data gathering, in: Proceedings of INFOCOM’04, IEEE, 2004.

[4] H. Dai, R. Han, A node-centric load balancing algorithm for wireless
sensor networks, in: Proceedings of GLOBECOM’03, IEEE, 2003.

[5] M. Fürer, B. Raghavachari, Approximate the minimum-degree
Steiner tree to within one of optimal, Journal of Algorithms 17
(1994) 409–423.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H. Freeman Company, NY, 1979.

[7] A. Goel, D. Estrin, Simultaneous optimization for concave costs:
single sink aggregation or single source buy-at-bulk, in: Proceedings
of SODA’03, ACM-SIAM, 2003.

[8] A.V. Goldberg, R.E. Tarjan, A new approach to the maximum-flow
problem, Journal of ACM 35 (1988) 921–940.

[9] W. Heinzelman, Application-Specific Protocol Architectures for
Wireless Networks, Ph.D. Thesis, Massachusetts Institute of
Technology, 2000.

Fig. 11. The network lifetime delivered by the ‘top-down with
refinement’ algorithm and its ratio to the upper bound of the optimal
network lifetime for sensor networks deployed in a square with various
edge lengths while the node density 1=200ðnodes=m2Þ is fixed.

1076 F. Shan et al. / Computer Networks 57 (2013) 1063–1077

[10] P.H. Hsiao, A. Hwang, H.T. Kung, D. Vlah, Load-balancing routing for
wireless access networks, in: Proceedings of INFOCOM’01, IEEE,
2001.

[11] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva,
Directed diffusion for wireless sensor networking, IEEE/ACM
Transactions on Networking 11 (2003) 2–16.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, Impact of
network density on data aggregation in wireless sensor networking,
in: Proceedings of ICDCS’02, IEEE, 2002.

[13] K. Kalpakis, K. Dasgupta, P. Namjoshi, Efficient algorithms for
maximum lifetime data gathering and aggregation in wireless
sensor networks, Computer Networks 42 (2003) 697–716.

[14] S. Khuller, B. Raghavachar, N. Young, Balancing minimum spanning
and shortest path trees, in: Proceedings of SODA’93, ACM-SIAM,
1993.

[15] W. Liang, Y. Liu, Online data gathering for maximizing network
lifetime in sensor networks, IEEE Transactions on Mobile Computing
6 (2007) 2–11.

[16] J. Liang, J. Wang, J. Cao, J. Chen, M. Lu, An efficient algorithm for
constructing maximum lifetime tree for data gathering without
aggregation in wireless sensor networks, in: Proceedings of
INFOCOM’10, IEEE, 2010.

[17] S. Lindsey, C.S. Raghavendra, PEGASIS: power-efficient gathering in
sensor information systems, in: Proceedings of Aerospace
Conference, IEEE, 2002.

[18] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: a Tiny
AGgregation service for ad-hoc sensor networks, in: Proceedings of
OSDI’02, ACM, 2002.

[19] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson,
Wireless sensor networks for habitat monitoring, in: Proceedings of
ACM International Workshop on Wireless Sensor Networks and
Applications, ACM, 2002.

[20] G.J. Pottie, Wireless sensor networks, in: Proceedings of Information
Theory Workshop, IEEE, 1998.

[21] P. von Richenbach, R. Wattenhofer, Gathering correlated data in
sensor networks, in: Proceedings of DIALM-POMC, ACM, 2004.

[22] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, Balancing
energy efficiency and quality of aggregate data in sensor networks.
Journal of VLDB (2004).

[23] A. Singh, M. Woo, C.S. Raghavendra, Power-aware routing in mobile
ad hoc networks, in: Proceedings of MobiCom, ACM/IEEE, 1998.

[24] Y. Wu, Z. Mao, S. Fahmy, N.B. Shroff, Constructing maximum-lifetime
data gathering forests in sensor networks, IEEE/ACM Transactions on
Networking 18 (2010) 1571–1584.

[25] Y. Wu, S. Fahmy, N.B. Shroff, On the construction of a maximum-
lifetime data gathering tree in sensor networks: NP-completeness
and approximation algorithm, in: Proceedings of INFOCOM’08, IEEE,
2008.

[26] T. Yan, Y. Bi, L. Sun, H. Zhu, Probability based dynamic load-
balancing tree algorithm for wireless sensor networks, in:
Proceedings of ICCNMC 05, LNCS, 2005.

Feng Shan received his B.S. degree in Com-
puter Science from Hohai University, Nanjing,
China, in 2008. He is currently pursuing the
Ph.D. degree in computer science and engi-
neering at Southeast University, Nanjing,
China. He joined the Department of Computer
Networking, University of Missouri-Kansas
City, Kansas City, MO, United States, from
2010 to 2012 as a visiting scholar. His
research interests are in the areas of Wireless
Sensor Network, algorithm, and wireless
multi-hop networks.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National Univer-
sity in 1998, the ME degree from the Univer-
sity of Science and Technology of China in
1989, and the BSc degree from Wuhan Uni-
versity, China in 1984, all in computer science.
He is currently an Associate Professor in the
Research School of Computer Science at The
Australian National University. His research
interests include design and analysis of
energy-efficient routing protocols for wireless
ad hoc and sensor networks, information

processing in wireless sensor networks, cloud computing, design and
analysis of parallel and distributed algorithms, combinatorial optimiza-
tion, and graph theory. He is a senior member of the IEEE.

Jun Luo received his M.S. degree in Software
Engineering from National University of
Defense Technology, China, in 1989, and the
B.S. degree in Computer Science from Wuhan
university, China, in 1984. He is currently a
full professor at School of Computer in
National University of Defense Technology,
China. His research interests are in ad hoc and
sensor networks, design of energy-efficient
protocols for wireless networks and operating
systems.

Xiaojun Shen received his Ph.D. degree in
computer science from the University of Illi-
nois at Urbana–Champaign, in 1989. He
received his M.S. degree in computer science
from the Nanjing University of Science and
Technology, China, in 1982, and his B.S.
degree in numerical analysis from the Tsing-
hua University, Beijing, China, in 1968. He is
currently a professor in the School of Com-
puting and Engineering at the University of
Missouri-Kansas City. He is a senior IEEE
member. His current research interests

include computer algorithms and computer networking with focus on
routing and scheduling.

F. Shan et al. / Computer Networks 57 (2013) 1063–1077 1077

	Network lifetime maximization for time-sensitive data gathering in wireless sensor networks
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 System and problem formulation
	3 NP-Hardness
	4 Top-down distance tree algorithm
	4.1 A centralized algorithm
	4.1.1 Constructing a flow network N(B) from the given ?
	4.1.2 The top-down distance tree algorithm

	4.2 Overview of the distributed implementation
	4.3 Distributed implementation

	5 The balance-refine algorithm
	5.1 Modeling of the re-connecting problem
	5.2 A distributed algorithm for re-connecting two layers
	5.2.1 The first stage – start stage
	5.2.2 The second stage – admission stage
	5.2.3 The third stage – transfer stage

	5.3 Correctness and termination

	6 Performance evaluation
	6.1 A Lower bound
	6.2 Balanced trees delivered by different algorithms
	6.3 Evaluation of network lifetime of different routing trees by different algorithms

	7 Conclusion and future work
	Acknowledgments
	References

