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Abstract—Energy harvesting communication system enables energy to be dynamically harvested from natural resources and stored

in capacitated batteries to be used for future data transmission. In such a system, the amount of future energy to harvest is uncertain

and the battery capacity is limited. As a consequence, battery overflow and energy dropping may happen, causing energy

underutilization. To maximize the data throughput by using the energy efficiently, a rate-adaptive transmission schedule must address

the trade-off between a high-rate transmission which avoids energy overflow and a low-rate transmission which avoids energy

shortage. In this paper, we study an online throughput maximization problem without knowing future information. To the best of our

knowledge, this is the first work studying the fully-online transmission rate scheduling problem for battery-capacitated energy

harvesting communication systems. We consider the problem under two models of the communication channel, a static channel model

that assumes the channel status is stable, and a fading channel model that assumes the channel status varies. For the former, we

develop an online algorithm that approximates the offline optimal solution within a constant factor for all possible inputs. For the latter,

that the channel gains vary in range ½hmin; hmax�, we propose an online algorithm with a provenQðlog ðhmax
hmin

ÞÞ-competitive ratio. Our

simulation results further validate the efficiency of the proposed online algorithms.

Index Terms—Energy harvesting, battery capacity, energy overflow, energy-efficient rate scheduling, throughput maximization, online

algorithm, competitive ratio

Ç

1 INTRODUCTION

WITH salient features of energy harvesting, including
self-sustainability and perpetual operation, more and

more wireless devices are being equipped with energy-
harvesting capacities. In such a system, energy is dynami-
cally harvested and stored to the battery for future use.
However, any battery has a limited capacity, which may
result in energy overflow due to a sudden large amount of
future energy arrival.

If future energy arrivals are fully known in advance, a
device can use more energy to transmit data before a large
amount of energy is harvested in the near future, so as to
avoid energy overflow. However, energy harvested is
dynamic in nature and becomes hard to be predicted when
devices harvest energy from hybrid renewable resources,
e.g., solar, vibration, and wild. Thus, it becomes difficult to
decide how a device shall consume the energy. On one
hand, a conservative energy usage that uses energy at a low
rate in each stage may result in energy overflow upon new

energy arrival; on the other hand, an optimistic energy
usage that consumes energy at a high rate in each stage may
result in energy shortage.

Therefore, with dynamic energy arrivals and limited bat-
tery capacities, it is crucial to consider the energy efficiency
and the trade-off between energy overflow and energy
shortage. In this paper, we study online rate scheduling
algorithms for wireless devices, equipped with rate-adap-
tive capacities, to maximize the throughput by efficiently
utilizing the energy.

In rate-adaptive wireless systems, it is well-known that,
for most encoding schemes [3], [4], the data rate achieved at
any time is a concave increasing function of the transmis-
sion power allocated, which implies that, by consuming the
same amount of energy, transmitting in a longer period
with a lower rate always achieves higher data throughput
than transmitting in a shorter period with a higher rate.
Thus, besides the trade-off between energy-overflow and
energy-shortage, another trade-off between high rate trans-
mission and low rate transmission should be also well-
addressed in order to maximize the throughput.

In this paper, we address the aforementioned two chal-
lenges and study the throughput-maximization rate schedul-
ing problem in the online setting. In the literature, there are
two types of online models for scheduling problems. In the
partially-online model, partial future information is known,
e.g., distribution or prior information of the future energy
arrival; in the fully-onlinemodel, no prior/distribution infor-
mation of future energy arrivals is available. In this paper,
we consider the fully-online rate scheduling problem. The
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output of the online algorithmwill be measured by competi-
tive analysis, which compares the throughput of the online
algorithmwith the optimal offline solution.

In the literature, the online rate scheduling with dynamic
energy arrivals has been understudied. Before we are to
have a detailed literature survey in Section 2, here we make
a discussion on some most-related work, to emphasize the
contribution of our work. In prior work, Sharma et al. [18]
develop energy management policies that keep the data
queue stable and achieve the maximum throughput with
the assumption of known mean energy and infinite battery
capacity. Gatzianas et al. [17] investigate the data rate maxi-
mization problem in multihop networks with the assump-
tion of distribution information for energy arrivals. Vaze
et al. [22] present the first work to study the fully-online set-
ting without any distribution information to maximize the
throughput before a known deadline T , in which a T -com-
petitive online algorithm is developed. Due to its depen-
dency on the assumption of infinite battery capacity, it fails
to address the trade-off between energy overflow and
energy shortage. Furthermore, it relies on the assumption of
known number of time slots (deadline). In this paper, we
drop these two restricted assumptions and attempt to
develop more efficient algorithms.

In order to address the trade-off between energy over-
flow and energy shortage, we propose a novel method to
estimate future energy arrivals in our algorithm design.
That is, we partition the battery capacity into two equal
parts, where the first part is taken as an estimator to obtain
the time period during which the energy harvested is dou-
bled compared to the prior time period, and the second part
is used to deplete the energy accumulated. Instead of
assuming known mean energy or distribution information,
such a method provides a new way of estimation without
relying on any prior information. Moreover, it further
makes the arbitrary energy arrivals well-structured, which
helps to approach the optimal offline solution.

The contributions of the paper are summarized as follow,

� We study the throughput-maximization rate sched-
uling problem in battery-capacitated energy-harvest-
ing communication systems to address the trade-off
between energy overflow and energy shortage. Two
fully-online models are investigated, i.e., static chan-
nel model and fading channel model, which does
not assume any distribution/future information of
energy arrivals or channel status. This is the first
work studying the fully-online rate scheduling prob-
lem for battery-capacitated energy-harvesting com-
munication systems.

� For the static channel model with unlimited battery
capacity, we analyze the lazy schedule proposed
in [22] and prove it is constant competitive, which
significantly improves the result of T -competitive-
ness in [22].

� As the main result of this paper, we consider the
static channel model with finite battery capacity
where energy overflow may occur. We develop a
novel and efficient online algorithm, which is the
first constant competitive algorithm for the most
general setup in the literature.

� For the fading channel model, by adopting the algo-
rithm developed for the static channel model as a

building block, we derive a Qðlog ðhmax
hmin

ÞÞ-competitive

algorithm where hmin; hmax are the minimum/
maximum value of channel status, which is the first
logarithmic competitive algorithm and meanwhile
asymptotically optimal competitive, substantially
improving the linear competitive algorithm (T -com-
petitive, close to the number of time slots) that
assumes infinite battery capacity in the literature.

The rest of the paper is organized as follows. Section 2
reviews the related work in the literature. Section 3 presents
the preliminaries. Section 4 studies the online algorithms
for the static channel model with infinite battery capacity
where no overflow occurs. Section 5 develops an online
algorithm for the static channel model with energy overflow
addressed. The general fading channel model is then inves-
tigated in Section 6. The simulation results are presented in
Section 7. Finally, we conclude the paper in Section 8.

2 RELATED WORK

Tremendous research efforts have been made to design
energy-efficient rate scheduling algorithms. A comprehen-
sive review on the work in energy-harvesting wireless com-
munications can be find in a recent survey [6]. We only
review the most related ones due to space limit. In prior
works, [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] investi-
gate the rate scheduling algorithms for energy harvesting
communication systems with various objectives, such as
minimizing the completion time/energy consumption or
maximizing the throughput. Tutuncuoglu and Yener [10]
propose optimal algorithms to maximize the throughput
with the consideration of finite battery capacity. Shan et al.
[16] develop optimal max-throughput algorithm that satis-
fies individual deadline constraints.

All the above studies are limitedwithin the scope of offline
rate scheduling, which assumes known full information
about future energy arrivals or channel states. However,
future information may be hard to be obtained/predicted in
some cases. Online models are more suitable for these cases.
Unlike the offline setting where no energy overflow occurs,
the trade-off between energy overflow and energy shortage
should be addressed in the online setting. In prior work,
Sharma et al. [18] and Gatzianas et al. [17] investigate energy
management policies that keep the data queue stable and
achieve the maximum throughput in single channel and
multi-hop networks. Their result, however, relies on the
assumption of distribution information and hence is only par-
tially-online. To the best of our knowledge, [19], [20], [21], [22]
are among the first works to theoretically study the fully-
online algorithms that do not rely on any future/distribution

information. Buchbinder et al. [19], [20] develop efficient

max-throughput algorithms with Qðlog ðhmax
hmin

ÞÞ-competitive-

ness for non-energy-harvesting systems. Vaze [21] examine
the completion time minimization problem for energy-har-
vesting systems and derive efficient competitive algorithms.

The most related work to this paper is Vaze et al. [22],
which presents the first work to study the fully-online setting
and maximize the throughput, in which a T -competitive
online algorithm is proposed. The proposed algorithmworks
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under known time slot information T and infinite battery
capacity, without addressing energy overflow, which is
pseudo-online and not practical enough. This paper attempts
to remove these restrictions and develop more efficient algo-
rithmswith energy overflow addressed.

3 PRELIMINARIES

In this section, we will introduce the system model in data
transmission first and then formulate the problem.

3.1 System Model

We consider the point-to-point data transmission where a
transmitter needs to transmit as much data as possible to a
receiver with dynamic energy arrivals and channel state
changes. Assume that, a given time interval is partitioned
into consecutive time slots, 0; 1; . . . ; T � 1. In an online prob-
lem, T can be either unknown or known in advance. We
model the energy harvesting as a sequence of discrete time
events. Let H be the harvesting instance that is composed of
m harvestings fH1; H2; :::; Hmg. A harvesting Hi ¼ ðEi; tiÞ is
composed of Ei units of energy and an occurrence time
ti 2 f0; 1; . . . ; T � 1g. To be specific, we assume that the
energy harvested with an amount Ei is immediately
available to use in time slot ti. Accordingly, we say that
a harvesting event occurs at time ti. The occurrence time of
a harvesting event is also called a harvesting point. Assume
that 0 ¼ t1 < t2 < � � � < tm < T and the initial energy
level is E1 at the beginning time t1 ¼ 0.

The channel gain reflects the status of the channel, which
determines the data rate of communication when the trans-
mitter assigns a certain amount of energy for transmitting.
We consider two channel gain models in this paper. In the
static channel model, the channel gain is stable and equals h
at any time, while in the fading channel model, the channel
gain varies over time (known as fading effect). Denote by ht

the channel gain at time t, and correspondingly denote by
hmin and hmax the minimum channel gain and the maximum
channel gain respectively.

The transmitter can adaptively change its transmission
rate r, which is related to the power allocation p and channel
gain h through a function r ¼ gðp; hÞ called power-rate func-
tion. Such a power-rate function is concave and increasing
on p in many systems with realistic encoding/decoding
schemes [3], [4]. In this paper, we target at the typical loga-
rithmic power-rate functions r ¼ alog ð1þ b � h � pÞ ¼ gðp; hÞ
with parameters a; b > 0, and a general concave increasing
power-rate function r ¼ Gðp; hÞ of which the first derivation

satisfies @Gðp;hÞ
@p > 0 and the second derivation satisfies

@2Gðp;hÞ
@2p

� 0. We will write gðp; hÞ ¼ gðpÞ and Gðp; hÞ ¼ GðpÞ
for short if no ambiguity arises.

3.2 Problem Formulation

A schedule needs to decide the power allocation EðtÞ at each
time t 2 ½0; T Þ where EðtÞ is also called power allocation func-
tion. If the battery capacity is infinite, no overflow will occur
and a feasible schedule should satisfy the energy constraints.
That is, the depleted power by time t should be at most the
total energy harvested by that time,

X
0�t0�t

Eðt0Þ �
X
k:tk�t

Ek; 8t 2 ½0; T Þ: (1)

When the battery has a finite capacity B, the energy stored
in the battery at each time slot should not exceed the capac-
ity B. When the amount of energy harvested at time tk is Ek

and the empty space in the battery is less than Ek, we say
that energy overflow occurs. Assume that at time tk, the
amount of energy recharged to the battery is eðtkÞ, i.e.,
0 � eðtkÞ � Ek, then the amount of energy lost is
dðtkÞ ¼ Ek � eðtkÞ � 0 due to overflow. Accordingly, a feasi-
ble schedule needs to satisfy both the capacity constraint that
the amount of energy stored in the battery after recharging
is at most B,X

0�t0�t

eðt0Þ �
X

0�t0�t�1

Eðt0Þ � B; 8t 2 ½0; T Þ; (2)

and the energy constraint that the amount of energy depleted
is no more than that of the energy recharged for any time t,X

0�t0�t

Eðt0Þ �
X

0�t0�t

eðt0Þ; 8t 2 ½0; T Þ: (3)

The objective is to maximize the data throughput in the
period ½0; T Þ, X

t2½0;T Þ
GðEðtÞ; htÞ; (4)

where ht ¼ h for t 2 ½0; T Þ in the static model and ht varies
in the fading channel model.

When the number of time slots is known, the problem is
to maximize the data throughput with known deadline T ;
when the number of time slots is unknown, the problem
is generalized to maximize the data throughput with
unknown future time slots.

We adopt the paradigm of competitive analysis to mea-
sure the worst-case performance of online algorithms,
where an online algorithm ALG is compared to the optimal
offline solution OPT that knows the entire information of
the request sequence s (e.g., energy arrivals and channel
gains in this paper).

We say that an online rate scheduling algorithm is
�-competitive if it always achieves a throughput within �
times of the optimal offline solution for any input s. That is,

max
s

OPT ðsÞ
ALGðsÞ � �; (5)

where ALGðsÞ; OPT ðsÞ are the data throughput of ALG
and OPT respectively. We say that an algorithm is constant
competitive if the worst-case performance is always within
an Oð1Þ factor compared to the optimal solution. In this
paper, we aim at developing algorithms with asymptoti-
cally optimal performance bound, without optimizing the
constant factor.

4 STATIC CHANNELS: THROUGHPUT

MAXIMIZATION WITHOUT ENERGY OVERFLOW

In this section, we consider the problem in the static channel
model. The problem is to maximize the throughput before a
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known deadline T with the consideration of infinite battery
capacity where no energy overflow occurs, same as in [22].
In such setting, we note that a lazy online algorithm REPA
for the fading channel model is proposed in [12], [22] and it
is proved to be T -competitive in [22]. In this section, we
improve their results and prove that, as a fact, REPA is con-
stant competitive (independent of the input size) in the
static channel model.

4.1 Online Algorithm

Before presenting the algorithm, we introduce the proper-
ties of the optimal solution first. We start by introducing a
basic concept called equalization. Suppose that there are two
intervals with lengths T1; T2. The allocated power at each
time slot inside these two intervals is constantly p1; p2
respectively and p1 6¼ p2. If averaging all the power in these

two intervals by a constant power p1T1þp2T2
T1þT2

does not violate

the energy constraints over time, we can replace the original
schedule in these two intervals by a new schedule with a
single constant power to increase the throughput, by apply-
ing the concavity of the power-rate function. This will be
called equalization and we say that the power in these two
intervals are equalized. The time interval between any two
adjacent harvesting points is defined to be an epoch. As
stated in [7], [8], one basic property of the optimal solution
is that the power allocation function is non-decreasing.

Lemma 1. In the optimal schedule, the power allocation in any
epoch keeps constant; the overall power allocation function is a
non-decreasing step function.

Algorithm REPA adopts naturally the lazy strategy to
average all the current harvested energy over the remaining
time and transmit with the total average energy at each
time. Specifically, as presented in Algorithm 1, it computes

the average amount of energy, ei ¼ Ei
T�ti

, on the occurrence

of a harvesting, and then transmits with rate GðPi:ti�t eiÞ on
time t.

Note that no energy overflow occurs since all energy har-
vested can be recharged to the battery. The resulting power
allocation function is non-decreasing as time goes. The
schedule in the proposed algorithm does not rely on any
future information of the harvestings.

Algorithm 1. REPA

1: E ¼ 0.
2: for on the occurrence of a harvestingHi on time ti do
3: compute the average amount of energy ei ¼ Ei

T�ti
.

4: compute E ¼ E þ ei.
5: transmit at rate GðE; hÞ till the next harvesting point.
6: end for

4.2 Competitive Analysis of the Online Algorithm

Now we prove that the algorithm is constant competitive in
the static channel model.

Let EoptðtÞ and EREðtÞ be the power allocation (function)
computed in the optimal solution and the online algorithm

REPA respectively. Let EHðtÞ be the amount of harvested

energy in H at time t. EHðtÞ can be viewed as the energy

harvesting function generated by H. Note that EoptðtÞ and

EREðtÞ are computed with the input of harvestings H, or
equivalently, with the input of energy harvesting function

EHðtÞ. Let ERE;HðtÞ be the computed schedule of the online
algorithm running on the input of the energy harvesting

function EHðtÞ. Obviously, ERE;HðtÞ ¼ EREðtÞ.
Notice that EoptðtÞ is the optimal energy allocation at time

t. On one hand, in order to maximize the throughput, the

harvested energy EHðtÞ is not utilized immediately at time
t; instead, the optimal power allocation EoptðtÞ is the re-allo-
cation of the harvested energy which may properly post-
pone its usage to some later time. On the other hand, we
can use function EoptðtÞ to represent an energy harvesting
function in which the amount of energy harvested at time t

is EoptðtÞ. For the sake of analysis, we will abuse the notation

and take a power allocation function Eð�ÞðtÞ as an energy
harvesting function if it is required. Accordingly, we use

ERE;optðtÞ to denote the computed schedule of the online
algorithm running on the input of the energy harvesting

functions EoptðtÞ. In the following analysis, we use wðEð�ÞÞ
to denote the overall throughput achieved by energy

allocation function Eð�ÞðtÞ over all time t, i.e., wðEð�ÞÞ ¼P
t2½0;T Þ GðEð�ÞðtÞÞ.
Ideally, to prove the competitiveness, we need to build

the relationship between the optimal throughput wðEoptÞ
and the throughput wðERE;HÞ achieved by the online algo-

rithm. Note that both ERE;HðtÞ and EoptðtÞ are computed

based on H. Also, note that ERE;optðtÞ is computed based on
EoptðtÞ and EoptðtÞ is computed based on H. This implies

that ERE;optðtÞ is computed indirectly based onH as well. To

build the final relationship, we will use ERE;optðtÞ as a bridge
to compare wðEoptÞ with wðERE;HÞ. That is, in the following
analysis, we will first derive a bound between throughput

wðEoptÞ and wðERE;optÞ in Lemma 2, and then further build

the relationship between throughput wðERE;optÞ and

wðERE;HÞ in Lemma 3.
We first establish the bound between the data through-

put wðEoptÞ achieved by the optimal power allocation and

wðERE;optÞ achieved by the online algorithm running on the
energy harvesting function EoptðtÞ. The idea is to observe
the non-decreasing property of the two power allocation
functions and partition the interval into regions such that

throughput achieved in ERE;optðtÞ in a later region is at least
a constant factor of the optimal solution in its prior region.

Lemma 2. The throughput achieved by ERE;optðtÞ satisfies

wðERE;optÞ � wðEoptÞ
18

: (6)

Proof. We partition the time axis ½0; T Þ into several regions
as follows. For brevity, we assume T to be a value of 2 to

some constant power first, say T ¼ 2U , and discuss the
case of arbitrary value T later. The regions are respec-

tively the intervals ½0; T � T
2Þ; ½T � T

2 ; T� T
4Þ; . . . ; ½T � T

2r�1 ;

T � T
2rÞ; . . . ; ½T � 1; T Þ, where region r has length T

2r. Fig. 1

shows an example of the regions.
To bound the ratio between wðERE;optÞ and wðEoptÞ, we

compare the total rate obtained from ERE;opt and Eopt

respectively in every two adjacent regions, say region r
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and r� 1. In region r� 1 of Eopt, the total rate isP
T� T

2r�2�t<T� T
2r�1

GðEoptðtÞÞ. In region r of ERE;optðtÞ, the
total rate obtained is

P
T� T

2r�1�t<T�T
2r
GðPi�t

EoptðiÞ
T�i Þ, which

is at least

X
T� T

2r�1�t<T�T
2r

G
X

t�T
2r�i < t

EoptðiÞ
T � i

0
@

1
A; (7)

�
X

T� T
2r�1�t<T�T

2r

G
X

t�T
2r�i< t

Eopt
�
t� T

2r

�
T

2r�2

0
@

1
A; (8)

�
X

T� T
2r�1�t<T�T

2r

G
Eopt

�
t� T

2r

�
4

� �
; (9)

�
X

T� T
2r�1�T

2r�t <T� T
2r�1

G
EoptðtÞ

4

� �
; (10)

� 1

2

X
T� T

2r�2�t<T� T
2r�1

G
EoptðtÞ

4

� �
; (11)

� 1

8

X
T� T

2r�2�t <T� T
2r�1

GðEoptðtÞÞ: (12)

The first inequality holds because EoptðiÞ is non-

decreasing by Lemma 1 and T � i � T � ðt� T
2rÞ �

T
2r�1 þ T

2r � T
2r�2 . The second inequality is correct since

the total number of items in the inner summation is

at least T
2r � 1

4
T

2r�2. The third one holds by rewriting

index t and the fact that the length of region r is T
2r.

The second last inequality is because EoptðtÞ is non-

decreasing and the length T
2r of region r is at least 1

2 of

that of region r� 1. The last inequality holds by

4GðEoptðtÞ
4 Þ � GðEoptðtÞÞ by the concavity of the power-

rate function.
Thus, the total rate obtained in region r in ERE;optðtÞ is

at least 1
8 of that in region r� 1 in EoptðtÞ. Furthermore,

the last region has length 1 and the energy allocated in

that time in ERE;optðtÞ is at least that of EoptðtÞ. Conse-
quently, summing up the rate in all regions of ERE;optðtÞ,
we have

10 � wðERE;optÞ; (13)

� 8
XU
r¼1

XT�T
2r

t¼T� T
2r�1

G
X

t�T
2r�i < t

EoptðiÞ
T � i

0
@

1
Aþ 2wðERE;optÞ; (14)

�
X

1�r�U

XT� T
2r�1

t¼T� T
2r�2

GðEoptðtÞÞ þ
X

T�2�t<T

GðEoptðtÞÞ: (15)

� wðEoptÞ: (16)

Now we discuss the case that T is an arbitrary value.
We partition the time axis ½0; T Þ into several regions
as follows. The regions are respectively the intervals

½0; T � dT2eÞ; ½T � d T
2e; T � dT4eÞ; . . . ; ½T � d T

2r�1e; T � dT2reÞ;
. . . ; ½T � 1; T Þ, where region r has length d T

2r�1e � dT2re.
The detailed computation would give that the length of

region r is at least 14 that of region r� 1. Following similar

deduction as above, the total rate obtained in region r in

ERE;optðtÞ is at least 1
16 of that in region r� 1 in EoptðtÞ.

Finally, summing up the rates in all regions, we have

wðERE;optÞ � 1
18wðEoptÞ. This completes the proof. tu

Then, we further establish the relationship between the
throughput achieved in ERE ¼ ERE;H and ERE;opt, which

respectively take H and EoptðtÞ as the input. The idea is to
observe that, as the inputs of the online algorithm, EoptðtÞ is
generated by properly postponing the usage of harvested
energy inH.

Lemma 3. wðERE;HÞ � wðERE;optÞ.
Proof. We start by investigating the following splitting pro-

cess applied to a harvesting. The harvesting, say Hk, is

split into a harvesting Ĥk with amount e, which occurs at

time t̂e > tk, and a remaining harvesting �Hk with
amount of ek � e that still occurs at time tk. Denote by H
the instance fH1; . . . ; Hk; . . . ; Hmg before the splitting
and H0 the instance after the splitting. When running
algorithm REPA respectively with the input of H and
with the input of H0, the part of energy with amount e in
Hk is averaged over interval ½tk; T Þ before the splitting

while it is averaged over interval ½t̂e; T Þ after the splitting.
Note that ERE;HðtÞ is non-decreasing. Compared with

averaging e over interval ½t̂e; T Þ, averaging e over interval
½tk; T Þ would move part of energy with amount e from

½t̂e; T Þ in ERE;H0ðtÞ to ½tk; t̂eÞ. Moreover, the resulting func-

tion ERE;HðtÞ is non-decreasing. This implies that

wðERE;HÞ � wðERE;H0Þ by the concavity of the power-rate
function.

Observing this, we generalize the analysis above to
show wðERE;HÞ � wðERE;optÞ. The harvested energy can
only be utilized after its occurrence time. The optimal
solution EoptðtÞ properly delays the usage of some energy

Fig. 1. An example that shows the regions in ERE;optðtÞ and EoptðtÞ.
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to make the energy assigned in non-decreasing manner,
and hence achieves the optimal throughput. The function
EoptðtÞ can be taken as another harvesting instance gener-
ated by properly delaying the occurrence time or partial

harvested energy in H. Now, consider ERE;optðtÞ and

ERE;HðtÞ that is obtained by running REPA with the

input of EoptðtÞ and with the input of H respectively.

ERE;HðtÞ can be generated by gradually and properly

moving part of the energy of ERE;optðtÞ to some early
time by applying the splitting process to multiple har-

vestings. The resulting function ERE;HðtÞ is still non-
decreasing, which would induce the desired bound that

wðERE;HÞ � wðERE;optÞ. tu
Finally, combining the results in Lemma 2 and Lemma 3,

we have

wðERE;HÞ � wðERE;optÞ � wðEoptÞ
18

: (17)

This has derived the constant competitiveness of Algorithm
REPA, as summarized in the following theorem.

Theorem 1. Algorithm REPA is constant competitive in the
static channel model for general concave power-rate functions.

We note that scheduling with known/fixed deadline T
and infinite battery capacity is pseudo-online and not practi-
cal enough. Thus, in the next section, we will remove such
assumptions to design a more practical algorithm.

5 STATIC CHANNELS: THROUGHPUT

MAXIMIZATION WITH ENERGY OVERFLOW

In this section, we study the online throughput maximiza-
tion problem in static channels with a capacitated-battery,
where energy overflow may occur and the trade-off
between energy overflow and energy shortage has to be
considered. Moreover, we consider a more general setting
in which the future time slot information is unknown. This
practically models the general online setup where the trans-
mitter needs to maximize the data throughput without
knowing a deadline, which will be further adopted as a key
building block to deal with the scheduling in fading chan-
nels in the next section.

When the battery capacity constraints are incorporated,
we can see that the following different properties arise.
First, the harvested energy may have to be dropped due to
overflow at some time. Second, to achieve higher through-
put, the rate may be increased in advance in case of energy
dropping/overflow in the next time at which a large
amount of energy is harvested. Third, the rate in the optimal
solution is no longer non-decreasing and hence the mono-
tonic property stated in the previous section fails to hold.

Furthermore, with unknown information of future time
slots, it is even impossible to apply the averaging process
like REPA, which divides the residual energy over the num-
ber of the remaining time slots. These together bring us
many difficulties in designing online algorithms with
proven good performance bounds.

In the following sections, we will propose a novel algo-
rithm and examine the structural properties brought by the
design of the algorithm first, and then prove its constant
competitiveness based on those properties.

5.1 Online Algorithm Design and Its Structural
Properties

To derive an online algorithm with constant competitive-
ness, we propose a novel method to deal with the battery
capacity and unknown information of future time slots.

The idea is to equally divide the battery capacity into the
cumulative part (which receives the energy) and executive
part (which depletes the energy received by the cumulative
part). When the accumulated energy is doubled or exceeds
its capacity, i.e., B

2 , the cumulative part would empty its

received energy to the executive part. When the capacity B
2

is exceeded, the energy harvested cannot be accumulated/
recharged any more and energy overflow occurs. The
cumulative part is indirectly utilized as a deterministic esti-
mator to guess the time period in which the accumulated
energy of the harvestings is doubled or exceeds the capacity
B
2 . Such an estimation method would partition the online

energy arrivals into sessions so that the energy in each ses-
sion and the accumulated energy over sessions would have
well-structured properties, which could be utilized to
approach the optimal offline solution.

Algorithm 2. CUMULATIVE-GUESSING(H,B)

1: Divide the battery into two parts, the cumulative part with
capacity B

2 and the executive part with capacity B
2 . Initially

set the amount in the cumulative part and executive part to
be Ec ¼ 0 and Ee ¼ 0.

2: Set index u ¼ �1. Let Tu denote the number of time slots in
session u. Initially set all Tu ¼ 0 and write the initial cumu-
lative amount of energy to be Xu ¼ 0. Set the time index
t ¼ 0.

3: while on the arrival of time t do
4: If the harvested energy at time t is Ei, add Ei to the

cumulative part, Ec ¼ Ec þ Ei.
5: t ¼ t þ 1.

// identify the first time at which Ec exceed s the amount

minf2Xu;
B
2g.

6: if Ec � 2 �Xu or Ec � B
2 then

7: Report that t is the first time at which Ec is doubled or

at least B
2 (critical time point). Set Xuþ1 ¼

minfEc;
B
2g; Tu ¼ t � 1.

8: Reset the executive part Ee ¼ Xuþ1 ¼ minfEc;
B
2g and

cumulative part Ec ¼ 0.
9: Reset the time index t ¼ 1 and set u ¼ uþ 1. Session

uþ 1 begins.
10: end if
11: Deplete the power from execute part and transmit at rate

rðXu; tÞ ¼ gððð3�2
ffiffi
2

p ÞXu

4�h�2dlog te Þ
1
2Þ at time t as the procedure in [19]

to approximate (without information Tu) the local opti-

mal solution Tu � gðXu
Tu
Þ in session u.

12: end while

Algorithm CUMULATIVE-GUESSING presents the design of
the online algorithm, which takes the harvestings H and
capacity B as the input. We use Ec and Ee to denote the
amount of energy in the cumulative part and the executive
part. The online algorithm will divide the time interval into
sessions. We useXuþ1 to denote the amount of energy at the
beginning of session uþ 1 in the executive part. We call the
time at which the amount of energy in the cumulative part
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exceeds 2Xu or B
2 (Step 6) to be the critical time point. The

interval between any two critical time points is defined
to be a session. In the while loop, the cumulative part starts
to receive/accumulate energy from the beginning of each
session and hence Ec ¼ Ec þEi when the amount of energy

harvested is Ei. If Ec exceeds minf2Xu;
B
2g at the critical

time point, the executive part of the battery would recharge
energy with amount of Ec from the cumulative part and
hence empty the cumulative part, which is achieved by

resetting the executive part to be Ee ¼ Xuþ1 ¼ minfEc;
B
2g

and the cumulative part to be Ec ¼ 0. Accordingly, session
uþ 1 starts at the first time point at which Xuþ1 �
minf2Xu;

B
2g (also, the time index t is reset to be zero at that

time) and ends right before the first time point at which

Xuþ2 � minf2Xuþ1;
B
2g. Note that Xu is non-decreasing on u

and energy overflow occurs when the cumulative part fully

uses its capacity B
2 .

Note that at the beginning of each session u, the amount
Xu of energy is known at that time, while the length (total
number of time slots) Tu of session u is future information
and not known until the end of that session. Thus, the online
algorithm can only schedule without using the future infor-
mation Tu. The maximum achievable total data rate to allo-

cate the energy with amount Xu in Tu time slots is Tu � gðXu
Tu
Þ,

which will be called local optimal solution of session u. We
notice that [19] provides an online procedure to approxi-
mate such a local optimal solution within a constant factor
of around 48 without relying on the future information Tu,
where the rate assigned at the tth time among the Tu time
slots is denoted by rðXu; tÞ in this paper.

Thus, we set an index t in our algorithm and run that
procedure to transmit at rate rðXu; tÞ, to approximate the

local optimal solution of session u, Tu � gðXu
Tu
Þ, in Step 10.

Denote by Ci ¼ ðXi; TiÞ an accumulated event where Ti is
the length of session i. Let C ¼ fC0; C1; C2; . . . ; CUg be the
accumulated instance. Fig. 2 presents an example for the
accumulated instance and the local optimal solution

Tu � gðXu
Tu
Þ of session u.

The design of our online algorithm implies the following
structural properties:

P1: (Session property) between every two adjacent critical
time points, the total amount of harvested energy
between the two critical time points is less than

minf2Xu;
B
2g, while the accumulated amount of energy

satisfies Xuþ1 � minf2Xu;
B
2g at the latter critical time

point, since the latter one is the first time point at

which the accumulated energy exceedsminf2Xu;
B
2g.

P2: (Accumulation property) if session uþ 1 is the first ses-

sion with Xuþ1 � B
2 , then Xi � 2Xi�1 for i � u, and

moreover, simple deduction would derive that the
amount of harvested energy in session i is at least that
of the total energy harvested by session i� 1, i.e.,

Xi �
Pi�1

j¼0 Xj for any i � u..

P3: (Local-rate property) in each session u, the algorithm
allocates the power at rate rðXu; tÞ to approximate

the local optimal solution Tu � gðXu
Tu
Þ within a constant

factor.
The session property states the property of the energy

accumulated in the critical time point. The accumulation
property states the structural property of the energy accu-
mulated in the current session and the energy harvested by
that session. The local-rate property provides an approxi-
mation for the local maximum achievable rate in each ses-
sion. These properties altogether do help the online
algorithm to approach the optimal solution, which will be
shown in the next section.

5.2 Constant Competitiveness of the Online
Algorithm

Based on the structural properties brought by the design of
the algorithm, we will prepare four equalities/inequalities
to derive the constant competitiveness of our online algo-
rithm CUMULATIVE-GUESSING.

First, we build a relationship between the output of the
algorithm running on the original harvestings H and that
of the algorithm running on the harvestings transformed

from the accumulated instance C. Let ECG;HðtÞ be the com-
puted schedule returned by CUMULATIVE-GUESSING running
on H. Let X0 be the energy at the beginning. Session 1

starts at the first time point at which X1 � minf2X0;
B
2g

and the interval before that time point is treated as session
0. Algorithm CUMULATIVE-GUESSING individually tackles
every accumulated event Ci to approximate the local opti-
mal solution without the length information Ti of the ses-
sion. Thus, C can be transformed into another harvesting
instance

HðCÞ ¼ ðX0; 0Þ; ðX1; T0Þ; . . . XU;
XU�1

i¼0

Ti

 !( )
: (18)

Let ECG;CðtÞ be the computed schedule returned by
CUMULATIVE-GUESSING running on such a harvesting instance
HðCÞ. Then, we have the first relationship,

wðECG;HÞ ¼ wðECG;CÞ: (19)

Second, by applying the session property (P1), we
derive a relationship between the optimal solution with
the input of the original harvestings H and that with the
input of the harvestings transformed from the accumu-
lated instance C. Note that C is generated in the cumulative
part by running CUMULATIVE-GUESSING on H, and moreover,
C can be transformed into another harvesting instance

Fig. 2. An example that demonstrates the accumulated instance
C ¼ fðCi; TiÞ; 0 � i � Ug and the local optimal solution in session u,

Tu � gðXu
Tu
Þ. In the accumulated instance C, the interval covered by a line is

the duration of a session and Xu is the energy of the executive part
when session u begins. The accumulated instance C0 is assumed to be
fð3Ci; TiÞ; 0 � i � Ug.
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HðCÞ ¼ ðX0; 0Þ; ðX1; T0Þ; ::: XU;
XU�1

i¼0

Ti

 !( )
; (20)

where the harvested energy at time
Pu�1

i¼0 Ti is Xu (which is
generated by postponing the energy harvesting in H).

Denote by Eopt;HðtÞ and Eopt;CðtÞ respectively the optimal
schedule with the input of harvesting instance H and that
with the input ofHðCÞ transformed from C. Obviously,

wðEopt;CÞ � wðEopt;HÞ: (21)

Let C0 ¼ fð3Xi; TiÞ; 0 � i � Ug where the amount 3Xu of

energy at time
Pu�1

i¼0 Ti corresponds to the upper bound of
total energy in the accumulative part at that time if the
energy harvested in session u of H (which is at most 2Xu

according to the session property (P1)) is advanced to that
time, which is illustrated in Fig. 2. Moreover, C0 can be trans-
formed into a harvesting instance

HðC0Þ ¼ ð3X0; 0Þ; ð3X1; T0Þ; . . . 3XU;
XU�1

i¼0

Ti

 !( )
: (22)

Obviously, it is true that

wðEopt;HÞ � wðEopt;C0 Þ: (23)

Therefore, we have the second relationship

wðEopt;HÞ � wðEopt;C0 Þ � 3wðEopt;CÞ; (24)

where the last inequality holds by applying the concavity
of the power-rate function and the fact that the length of
each session is not changed while the harvested energy is
enlarged three times in C0 than C does.

Third, based on the local-rate property (P3), we examine
the relationship between the throughput of the online algo-
rithm and the local optimal solution, which is defined to be
the local maximum data rate

P
0�i�U TigðXi

Ti
Þ achieved in all

sessions by equalizing an amount Xi of energy over Ti time
slots for each accumulated event Ci ¼ ðXi; TiÞ. Because by
the equalization method, if the number of time slots is
known, the optimal solution for allocating the energy with
an amount E over T time slots is to equalize the energy to

achieve T � gðETÞ data rate. For each individual accumulated

event Ci ¼ ðXi; TiÞ, as stated in the local-rate property (P3),
algorithm CUMULATIVE-GUESSING runs the procedure in [19]
with rate rðXu; tÞ to approximate (without information Ti)

the local optimal solution TigðXi
Ti
Þ within a constant factor.

Accordingly,

wðECG;CÞ ¼
X

0�i�U

X
1�t�Ti

rðXu; tÞ: (25)

Let ELOpt;CðtÞ be the corresponding local optimal power allo-

cation function for all the sessions and wðELOpt;CÞ be the
local optimal solution, i.e.,

wðELOpt;CÞ ¼
X

0�i�U

Tig
Xi

Ti

� �
: (26)

Applying the competitiveness in [19] that

Tig
Xi

Ti

� �
� Oð1Þ

X
1�t�Ti

rðXu; tÞ; (27)

we have the following third relationship,

wðELOpt;CÞ ¼
X

0�i�U

Tig
Xi

Ti

� �
� Oð1ÞwðECG;CÞ: (28)

Last, by using the structural information of the sessions
implied by the accumulation property (P2), we prove the
relationship between the local optimal solution wðELOpt;CÞ
and the optimal solution wðEopt;CÞ. The proof is moved to
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2016.2539163.

Lemma 4. Running on the accumulated instance C, the through-
put achieved by the local optimal power allocation function
satisfies

wðELOpt;CÞ � 1

4
wðEopt;CÞ: (29)

Remark. The idea of the proof is to observe two facts
derived by the accumulation property (P2). First, before
the first time point at which the accumulated energy
exceeds the capacity B

2 , a subset of sessions that contrib-
ute high data rate can be carefully selected and proved
with a good throughput compared to the optimal solu-
tion. Second, after that time point, the energy in the exec-

utive part is B
2 and sufficiently large to approximate the

throughput achievable for the optimal solution.

Consequently, combining all the inequalities (19), (24),
(28), (29) above, we have

wðEopt;HÞ � wðEopt;C0 Þ; (30)

� 3 � wðEopt;CÞ; (31)

� 12 � wðELOpt;CÞ; (32)

� 12 �Oð1ÞwðECG;CÞ; (33)

¼ Oð1ÞwðECG;HÞ: (34)

This has derived the constant competitiveness of the algo-
rithm’s wost-case performance, as concluded in the follow-
ing theorem, which is the first algorithm achieving the
constant competitive ratio. Such a performance bound is
independent of the input size.

Theorem 2. Algorithm CUMULATIVE-GUESSING is constant com-
petitive in the static channel model with finite battery capacity
and unknown future information.

Discussion 1. We note that [18] developed partially-online algo-
rithms under the assumption of known (future) mean of harvested
energy and infinite battery capacity. Interestingly, although such
assumption is removed in this paper, the estimation method devel-
oped is able to obtain similar information (the harvested energy in
the near future). That is, half of the battery capacity is used to esti-
mate the time period in which the energy harvested is doubled. In
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such a sense, our method provides a new method in guessing/
obtaining future information and helps to approach the optimal
offline solution, which is powerful and surprising at first glance.
We believe that such a method is of independent interest for study-
ing other related problems in energy harvesting systems.

6 FADING CHANNELS: THROUGHPUT

MAXIMIZATION WITH ENERGY OVERFLOW

In this section, we investigate the fading channel model
with finite battery capacity where energy overflow may
occur. The algorithm needs to schedule with the input of
varying channel gains and dynamic energy arrivals. We
will develop a logarithmic competitive algorithm.

Algorithm PARTITION presents the details of the proposed
algorithm. The idea is to partition the channel gains that arrive

over time into L ¼ dlog hmax
hmin

e levels where level l is composed

of the channel gains ranging in ½hmin2
l�1; hmin2

lÞ. The channel
gains in the same level l differ at most by a factor of 2 and this
allows us to treat these channel gains to be the smallest one

hmin2
l�1 which will not lose too much competitive ratio in

later analysis. The harvested energy and the battery capacity

are partitioned equally into L parts. Denote H
L to be one of the

partitioned harvesting instance where H
L ¼ fðEi

L ; tiÞ; 1 � i �
mg. Then, the channel gains in the same level l are treated as

fixed value h ¼ hmin2
l�1 as in the static channel model.

However, due to the partition strategy applied above, each
level has unknown number of time slots. Fortunately, we
have derived an online algorithm CUMULATIVE-GUESSING for
static channel model with unknown number of time slots in
the previous section, which will be denoted as CUMULATIVE-
GUESSING(HL ;

B
L ; h), where h is the static channel gain. Thus, we

can tackle each level of channel gains with the support of B
L

battery capacity and the partitioned harvesting instance H
L in

an online manner. That is, run procedure CUMULATIVE-GUESS-

ING(HL ;
B
L ; hmin2

l�1) on the arrival of channel gains in level l.

Algorithm 3. PARTITION

1: partition the channel gains arrived over time into

L ¼ dlog hmax
hmin

e levels where level l is composed of the

channel gains ranging in ½hmin2
l�1; hmin2

lÞ. Treat the chan-
nel gains in level l to be hmin2

l�1.
2: divide the harvested energy over time and battery capacity

equally into L parts. Denote H
L to be one of the partitioned

harvesting instance H
L ¼ fðEi

L ; tiÞ; 1 � i � mg.
3: for on the arrival of a new channel gain ht at time t do
4: if the channel gain belongs to level l then
5: run CUMULATIVE-GUESSING(HL ;

B
L ; hmin2

l�1) for that level.
6: end if
7: end for

Wewill prove that the proposed algorithm is optimalwith
respect to competitiveness in the following sections. We will
first prepare a bound between the optimal solution for the
original harvesting instance/capacity and a partitioned har-
vesting instance/capacity, and then, based on this bound,
wewill derive the competitiveness of the online algorithm.

6.1 Optimal Properties of Partitioned Instance

Now we examine the optimal solution for the partitioned
instance. Denoted by OPT ðH; B; hÞ the optimal solution for

maximizing the throughput with harvestings H, battery

capacity B, and static channel gain h. Denote H
L to be the par-

titioned harvesting instance H
L ¼ fðEi

L ; tiÞ; 1 � i � mg. Simi-

larly, denote by OPT ðHL ; BL ; hÞ the optimal solution for

maximizing the throughput with harvestings H
L and capacity

B
L. We will develop an optimal algorithm COMPARE-DENSITY to

build the critical relationship between the optimal solution
OPT ðH; B; hÞ and the optimal solution for the partitioned

instance OPT ðHL ; BL ; hÞ.

Algorithm 4. COMPARE-DENSITYðtmin; tmax;H; BÞ
1: while there are some epoches not fixed yet do
2: compute all the possible minus-densities of the intervals,

minus densityðti; tjÞ ¼ gð
P

i�k�j
Ek�B

tj�ti
Þ; tmin � ti � tmax;

tmin � tj � tmax.

3: compute all the possible mix-densities of the intervals,

mix densityðti; tmaxÞ ¼ g

P
ti�tk < tmax

Ek

tmax�ti

� �
; tmin � ti � tmax.

4: find the interval, say ðtu; tvÞ, of which the corresponding
density achieves the value maxtmin�ti;tj�tmax fmix density

ðti; tmaxÞ; minus densityðti; tjÞg.
5: if ðtu; tvÞ is selected from mix-densities then
6: fix interval ½tu; tv ¼ tmaxÞ and transmit at rate

mix densityðtu; tvÞ in that interval.
7: update Eu ¼ 0 and treat the remaining harvestings in

interval ½tmin; tuÞ as new input instance.
8: run COMPARE-DENSITYðtmin; tu;H; BÞ.
9: end if
10: if ðtu; tvÞ is selected from minus-densities then
11: fix interval ½tu; tvÞ and transmit at rateminus density

ðtu; tvÞ in that interval.
12: update Eu ¼ 0; Ev ¼ B.
13: treat the refined harvestings in the remaining intervals

½tmin; tuÞ; ½tv; tmaxÞ as new input instances.
14: run COMPARE-DENSITYðtmin; tu;H; BÞ, COMPARE-DENSITY

ðtv; tmax;H; BÞ on the new input instances.
15: end if
16: end while

We will claim that OPT ðH; B; hÞ (and OPT ðHL ; BL ; hÞ)
can be characterized by the schedule returned by Algo-
rithm COMPARE-DENSITY(0; T;H; B) (and COMPARE-DENSITY

(0; T;HL ;
B
L)). We note that Tutuncuoglu and Yener [10]

provides an algorithm to compute the optimal solution
OPT ðH; B; hÞ. Our optimal algorithm COMPARE-DENSITY is
developed independently with a different method by
comparing the energy density and iteratively deleting
the intervals, which provides a simple way to prove the

relationship between OPT ðH; B; hÞ and OPT ðHL ; BL ; hÞ in

Lemma 5, since scaling down the harvested energy in
the input just affects the density of intervals selected
in the iterations.

Given an interval ðti; T Þ, we define the mix-density to be

mix densityðti; T Þ ¼ g

P
k�i Ek

T � ti

� �
: (35)

Given an interval ðti; tjÞ with tj < T , define minus-density
to be
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minus densityðti; tjÞ ¼ g

P
i�k�j Ek �B

tj � ti

� �
: (36)

Algorithm COMPARE-DENSITY works as follows. It com-
pares mix-density and minus-density to find the interval
with the largest rate in the optimal solution. Observe that
the energy harvested at time outside the interval with maxi-
mum rate will not be allocated to that interval in the optimal
solution. Algorithm COMPARE-DENSITY deletes the maximum
rate interval, updates the remaining harvestings, and itera-
tively computes the largest rate in the remaining intervals
till the schedule in all intervals is fixed. The proof of its opti-
mality is presented in Appendix, available in the online
supplemental material.

The following lemma states the desired relationship
between the optimal solutionOPT ðH; B; hÞ andOPT ðHL ; BL ; hÞ.
Lemma 5. OPT ðH; B; hÞ � L �OPT ðHL ; BL ; hÞ with L � 1.

Proof. Since COMPARE-DENSITY returns the optimal solution,
in order to build the desired relationship, it is sufficient
to compare the schedule returned by the optimal algo-
rithm COMPARE-DENSITY(0; T;H; B) and COMPARE-DENSITY

(0; T;HL ;
B
L). When running COMPARE-DENSITY(0; T;HL ;

B
L), the

Ei amount of energy harvested at ti and the battery
capacity are simultaneously scaled down by a factor L
compared to running COMPARE-DENSITY(0; T;H; B).

In the first iteration, we notice that the intervals found in
Step 4 in these two algorithms are always identical since
the interval that achieves the density maxtmin�ti;tj�tmax

fmix densityðti; tmaxÞ;minus densityðti; tjÞg is not affected
by the scaling operation. This makes the intervals found in
the second iteration keep the same, which also holds for all
intervals found in later iterations. Although the intervals
found in each iteration are identical, the amount of energy
invested at each time in the same interval is scaled down
by a factor L. According to the concavity of the power-rate
function, the rate gðptÞ � L � gðptLÞ when scaling down pt at

time t by a factor Lwith L � 1. Summing up the rates over
all time slotswould derive the desired bound

OPT ðH; B; hÞ � L �OPT
H
L
;
B

L
; h

� �
: (37)

tu

6.2 Performance Analysis

Now we are ready to derive the logarithmic competitive-
ness of Algorithm PARTITION. The idea is to merge the perfor-
mance achieved by the optimal algorithm and the online
algorithm running on the partitioned instance. In fact, PARTI-

TION is asymptotically optimal competitive, because even for
non-energy-harvesting systems, it is proved that any online
algorithm is Vðlog ðhmax

hmin
ÞÞ-competitive for maximizing the

throughput [19].

Theorem 3. Algorithm PARTITION is optimal Qðlog ðhmax
hmin

ÞÞ-
competitive for the throughput maximization problem in fad-

ing channels with logarithmic power-rate function.

Proof. We prepare three bounds first. Assume that
OPT ðH; BÞ is the optimal offline throughput with the
input of harvestings H and capacity B. Let OPTjðH; BÞ

be the optimal achievable throughput over the channel
gains in level j with known harvestings H and capacity
B. Obviously, we have the first bound

OPT ðH; BÞ �
XL
j¼1

OPTjðH; BÞ: (38)

Let ALGjðHL ; BLÞ be the throughput achieved by the

channel gains in level j with partitioned harvestings H
L

and capacity B
L. Let ALGðH; BÞ be the throughput

returned by Algorithm PARTITION. Then,

ALGðH; BÞ ¼
XL
j¼1

ALGj
H
L
;
B

L

� �
: (39)

By applying the constant competitiveness of Algorithm
CUMULATIVE-GUESSING, we have the second bound

OPTj
H
L
;
B

L
; hmin2

j�1

� �
� Oð1ÞALGj

H
L
;
B

L

� �
; (40)

where OPTjðHL ; BL ; hmin2
j�1Þ is the optimal achievable

throughput of the channel gains in level j (which are

treated as the smallest value hmin2
j�1 in that level) with

partitioned harvestings H
L and capacity B

L.

Recall L ¼ Oðlog ðhmax
hmin

ÞÞ. Since the channel gains in

OPTjðH; BÞ are at most hmin2
j, we have

OPTjðH; BÞ � OPTjðH; B; hmin2
jÞ: (41)

Moreover, when the channel gains differ by a factor of 2,
it is true that

OPTjðH; B; hmin2
jÞ � 2OPTjðH; B; hmin2

j�1Þ: (42)

Recall Lemma 5 that states the relationship

OPTjðH; B; hmin2
j�1Þ � L �OPTj

H
L
;
B

L
; hmin2

j�1

� �
; (43)

which are the optimal solutions under the same channel
gain h ¼ hmin2

j�1. Combining these inequalities, we have
the third bound

OPTjðH; BÞ � OPTjðH; B; hmin2
jÞ; (44)

� 2OPTjðH; B; hmin2
j�1Þ; (45)

� 2L �OPTj
H
L
;
B

L
; hmin2

j�1

� �
: (46)

Merging the three bounds (38), (40), (46) above, we
have

OPT ðH; BÞ �
XL
j¼1

OPTjðH; BÞ; (47)

� 2L
XL
j¼1

OPTj
H
L
;
B

L
; hmin2

j�1

� �
; (48)

� Oð1Þ � 2L
XL
j¼1

ALGj
H
L
;
B

L

� �
; (49)
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¼ O log

�
hmax

hmin

�� �
ALGðH; BÞ: (50)

This has derived the final Oðlog ðhmax
hmin

ÞÞ-competitiveness
of the online algorithm.

Recall that even for non-energy-harvesting systems,
any online algorithm is Vðlog ðhmax

hmin
ÞÞ-competitive for

maximizing the throughput with dynamic channel gains

[19]. Therefore, our online algorithm is Qðlog ðhmax
hmin

ÞÞ-com-

petitive and asymptotically optimal. tu
Discussion 2. PARTITION is the first logarithmic competitive algo-
rithm for throughput maximization in energy harvesting systems,
improving upon the T -competitive algorithm REPA in [22]. PAR-

TITION is more flexible and efficient than REPA in the following
aspects: (1) REPA relies on the information T of future time slots
and hence is a pseudo-online algorithm, while PARTITION is not
resorting to any future information and hence more practical and
flexible; (2) for the worst-case performance bound, REPA is linear
competitive (close to the number of time slots), whilePARTITIONis
logarithmic competitive and thus asymptotically improves upon

REPA; (3) the factor log ðhmax
hmin

Þ is usually bounded and small since

there is a smallest acceptable rate or upper limit for the channel
gain in the transmission channel, while the factor T can approach
infinity as time goes by.

Discussion 3. Note that the upper bound of logarithmic competi-
tive ratio (Oðlog ðhmax

hmin
ÞÞ-competitive) derived for algorithm PARTI-

TION does not contradict the linear lower bound (VðT Þ-
competitive) derived in [22], since the proof in [22] assumes that
the channel gain is a function of the number of time slots T , while
our upper bound is derived with respect to the varying range of

channel gains. Moreover, the Oðlog ðhmax
hmin

ÞÞ-competitiveness of

PARTITION verifies that the fading coefficient information can be
important and properly utilized to derive more efficient online algo-
rithms with better theoretical guarantees. This provides a new
viewpoint different from [22], which does not use the channel gain
information in algorithm REPA and states that “the optimal com-
petitive ratio is invariant to the availability of the information
about the past/present fading coefficients, and shows that the causal
fading coefficient information is actually not useful”.

7 SIMULATIONS

Our theoretical analysis has bounded the worst-case perfor-
mance of our proposed online algorithms. In this section,
we conduct simulations and examine the average perfor-
mance of our online algorithms, CUMULATIVE-GUESSING and
PARTITION.

First, we perform simulations on Algorithm CUMULATIVE-
GUESSING for the static channel model. We compare the
results with the optimal offline solution OPT (which can be
computed by Algorithm COMPARE-DENSITY), since no online
algorithms have addressed the throughput maximization
problem in the same setting with battery capacity and
unknown number of future time slots for static channels.
We conduct the simulation with the power-rate function in
AWGN channels. The energy harvesting occurrence time is
assumed to be a uniform random integer between 1 and
500. The amount of harvested energy is assumed to follow
uniform distribution Uð1; 20Þ. The battery capacity is set to

be B ¼ 100. Fig. 3 demonstrates the simulation results of
our online algorithm. Each point in the figure is a mean
value of 100 random instances where h is a fixed value cho-
sen from normal distribution Nð4:65; 4Þ in each instance.
The ratio between the throughput achieved by the online
algorithm and the optimal solution is stable and varies in
range ½1:40; 1:75�, which validates the efficiency of our
online algorithm.

Then, we examine the average performance of our online
algorithm PARTITION in the fading channel model. Algorithm
PARTITION works with unknown future time slots, while in
prior work, algorithm REPA works with known number of
future time slots T [22]. PARTITION does not rely on the infor-
mation T of future time slots and thus generalizes the setup
of REPA. To directly compare these two algorithms is unfair
to PARTITION. We notice that an intuitive way to apply REPA
without the information T is to guess the number of future
time slots, say Tguess, and average the available energy over
the remaining time slots by Tguess, where similar idea is
adopted to the throughput maximization problem in non-
energy-harvesting systems [19]. We thus compare the results
of PARTITION to that of REPA by examining the influence of its
guessing accuracy T=Tguess. In this simulation, energy har-
vesting occurrence time is assumed to be a uniform random
integer between 1 and 500. The amount of harvested energy
is assumed to followuniformdistributionUð1; 20Þ. The chan-
nel gain is assumed to follow normal distribution Nð4:65; 4Þ
with range in ½0:1; 9:2�. The battery capacity is set to be
B ¼ 100 and the number of harvestings is 200. Fig. 4 demon-
strates the simulation results of our online algorithm where
each point is amean value of 100 random instances. The solid
line shows the ratio between the throughput achieved by
PARTITION and REPA when T ¼ 1;000. It can be seen that our
algorithm approaches REPA when the guessing accuracy is
high and outperforms REPA when the guessing accuracy is
less than 0.7. Moreover, when the number of time slots
is increased to 2,000 (dotted line), our algorithm can even
obtain higher throughput than REPA. This is possibly
because REPA is too pessimistic to be adaptive to the change
of channel gains in large number of time slots. This shows

Fig. 3. The performance ratio of the throughput achieved by the optimal
offline solution OPT to that of CUMULATIVE-GUESSING.
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that our online algorithm PARTITION is efficient and can out-
perform REPA in general setting since PARTITION does not
rely on the information of future time slots, while REPA is
pseudo-online due to the dependence on the number of
future time slots and actually the number of transmission
time slots is hard to predict in nature.

Together with the theoretical worst-case guarantees, the
simulation results on the average performance validate the
efficiency of our online algorithms.

8 CONCLUSION

This paper studies the fundamental online throughput max-
imization problem in battery-capacitated energy harvesting
systems. We address the trade-off between energy overflow
and energy shortage, and model the fully-online setup with-
out assuming any information of future time slots, energy
arrivals or channel gains. We develop the first online algo-
rithm with proven constant competitive ratio for static chan-
nels. Adopting it as a building block, we propose an online

algorithm which is proved optimalQðlog ðhmax
hmin

ÞÞ-competitive
for fading channels, improving the linear T -competitive
algorithm in prior work that depends on the time slot infor-
mation T . Our simulation results further validate the effi-
ciency of our online algorithms.
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