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Abstract—Unmanned aerial vehicles (UAVs) are being widely
used in wireless communication, e.g., collecting data from ground
nodes (GNs), where energy is critical. Existing works combine
speed scheduling, i.e., the controlling of speed, with trajectory
design for UAVs, making it complicated to solve while loses focus
on the fundamental nature of speed scheduling. We focus on speed
scheduling by considering straight line flights, with applications
in monitoring power transmission lines, roads, water/oil/gas pipes
and rivers/coasts. By real-world flight tests, we disclose a speed-
related flight energy consumption model, distinct from typical
distance-related or duration-related models. Based on such a
practical energy model, we develop the looking before crossing
(virtual rooms) algorithm, where virtual rooms on the time-
distance diagram represent the spatio-temporal constraint of GNs
in wireless transmission. This algorithm is proved to be optimal
in solving the offline problem, where all information is known
before scheduling. For the online problem, i.e., GN information is
not unavailable unless flies close, we propose an offline-inspired
online heuristic. Simulation shows its performance is near the
offline optimal. Our study on the practical flight energy model
and speed scheduling sheds light on a new research direction on
UAV-aided wireless communication.

Index Terms—Unmanned Aerial Vehicle, Energy Efficient,
Speed Scheduling, Practical Energy Model, Looking Before
Crossing, Offline Optimal Algorithm

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being widely adopted
in wireless communication research community [1]–[6], as
wireless base stations [3], wireless relays [4], and used in
edge computing [5], data collection [6]. Wireless sensors and
Internet of Things (IoT) devices are widely deployed for
various monitoring purposes nowadays. Data collection from
such ground nodes (GNs) using UAVs is one of the most
important applications, because UAVs can fly close to establish
line-of-sight energy-efficient data communications. There are
already tremendous research efforts in this direction [6]–[14].

Energy consumption of UAVs is one of the key issues,
because there is normally limited energy supply on board.
Hence, it is important to carefully manage energy consumption
and also important to model the flight energy consumption.
Most existing works consider two classic UAV energy models,
e.g., the distance-related energy consumption model [7], [8],
[12] and the duration-related model [6], [9], [15]. In the
distance-related model, the energy consumption is assumed
to be proportional to the distance that UAV covers; while in
the duration-related model, it is assumed to be proportional to
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Fig. 1. The application scenarios. A UAV is dispatched to collect data from
a set of wireless sensors or IoT devices (GNs) deployed along a straight line,
such as a power transmission line, a road, a water/oil/gas pipe or a river/coast.

the duration of flight. However, both models simplify the UAV
energy consumption and do not accurately reflect the energy
consumption during flight for indepth investigations.

Therefore, we conduct a set of real-world flight tests using
a multi-rotor UAV. In our on-site flight tests, a practical speed-
related energy consumption model is disclosed. In this model,
the flight power is related to the flight speed: the UAV has a
particular speed at which its power consumption is lowest;
at both higher and lower speeds it consumes more power.
Details will be discussed in the next section. Such model
has been verified by a most recent theoretical analysis work
on energy model of rotary-wing UAVs [11]. As a result, we
conclude that our speed-related model is more practical and
more general than most existing energy consumption models
used for wireless communication.

The most related work is by Zeng et al. [11]. After propos-
ing a theoretical energy model, they study the UAV energy
consumption minimization problem for collecting data from
GNs deployed in a given area. Their formalized problem is dif-
ficult to solve, because besides the speed scheduling, the UAV
flight trajectory also needs to be determined. As a result, they
obtain a heuristic solution with uncertain difference towards
the optimal solution. Instead of an area, we focus on deploying
GNs along a straight line, which is with lots of applications as
well, for example, monitoring power transmission lines, roads,



water/oil/gas pipes or river/coast. See Fig. 1 as an illustration
of the application scenarios. Besides, we consider only the
flight energy consumption, and ignore energy consumption for
wireless data transmission. This is because, according to our
real-world flight tests, the power for our UAV hover is around
400W , while a typical LoRa/Wi-Fi wireless communication
module’s power consumption is 100mW [16] / 300mW [17].
The wireless transmission consumption is a thousand times
smaller, thus it is ignored to let our problem focus on tracing
the fundamental nature of speed scheduling.

The readers can sense such fundamental nature of speed
scheduling from the following challenges to our problem.

1) The UAV flight energy must be minimized to collection
all data: on the one hand, if the UAV flies at a slower
speed, it has enough time to collect all data however
slower speed consumes more energy according to our
practical energy model; on the other hand, a faster-speed
flight may reduce the flight energy consumption but may
cause GN data not being completely collected since there
may be not enough time in transmission range.

2) The transmission ranges of GNs may overlap each other
and the UAV collects data from one GN at a time. As
a result, every GN competes for UAV time to deliver its
own data. Moreover, each GN has a different amount of
data to transmit and a different transmission range size,
such competition is rather complicated.

The contributions of this paper are summarized as follows.
• We adopt a practical speed-related energy consumption

model based on our real-world flight tests, and the results
show that the UAV has a particular speed in which its
power consumption is lowest; at both higher and lower
speeds it consumes more power. This model is distinct
to most existing works that assumes either the distance-
related or duration-related model.

• We propose an optimal algorithm named looking before
crossing (virtual rooms) to solve the offline problem.
Since each GN has spatial limits transmission range and
temporal requirements on transmission time, we propose
virtual rooms to represent these spatio-temporal con-
straints on a time-distance diagram. A trajectory crossing
these virtual rooms can be uniquely mapped to a solution.
It is proved that by looking before crossing, an optimal
solution can be determined.

• We propose a heuristic inspired by the offline algorithm
to solve the online problem where GN information is
not unavailable unless the UAV flies close. Simulation
results show its performance is quite close to the perfor-
mance of the offline optimal solution, the online energy
consumption is within 102% of the offline consumption.
Our study on the speed scheduling and practical flight
energy model shed light on a new research direction on
UAV-aided wireless communication.

The rest of the paper is organized as follows. Section II
introduces the flight energy model. Section III presents the
system model and the problem formulation. The crossing-the-

rooms problem and its optimal properties are introduced in
Section IV. Special cases and the general problem are studied
in Section V and Section VI, respectively. Then, the online
policy and simulations are described in section VII. Finally,
section VIII concludes the paper.

II. FLIGHT ENERGY CONSUMPTION MODEL IN DATA
COLLECTION

In this section, we first introduce two classic flight energy
consumption models and study the related works in the direc-
tion of UAV-aided wireless communciation. Then, we present
a practical speed-related model.

A. Distance-related and duration-related flight energy models

In the distance-related flight energy consumption model,
the energy consumption is assumed to be proportional to the
distance a UAV covers. Liu et al. [8] adopt this model and
consider the UAV as a airborne base stations to serve ground
user devices within a given region. A team of UAVs must
move according to the data collection demands while stay
connected. Piao et al. [7] study an indoor CSI measurement
problem in which a drone has to fly to each of the measurement
point in a given floor of a building. The energy of the drone
depend on the distance covered and the number of turns made.
Xiong et al. [12] assume that both distance and turn number
affect the UAV energy consumption, so they design a dynamic
programming approach to reduce the number of turns and total
flight distance while guarantee to fly close to GNs to collect
data.

In the duration-related flight energy consumption model,
the energy consumption is assumed to be proportional to
the duration of flight. Mozaffari et al. [9] investigate the
mobility of UAVs to collect data from ground IoT devices.
The flight power is assumed to be constant, therefore the
energy consumption is related to flight duration. Then, a 3D
trajectory planning problem is solved. Rahmati et al. [15]
adopt this model and study the problem to find good locations
so as to better relay the data from the designated sources
to destinations. Gong et al. [6] focus on the UAV flight
time minimization problem for data collection over a linearly
deployed GNs. Their proposed algorithms imply that the
energy consumption solely related to the flight time.

B. A practical speed-related flight energy model

However, both models simplify the UAV energy consump-
tion. We want to answer the following question: how does the
flight speed relate to the energy consumption?

Therefore, we perform a set of real-world on-site flight
tests to understand the relationship between the flight speed
and the power consumption. In our flight tests, we use a
2 kgs hexacopter drone with setting similar to the flight tests
conducted in [18]. Specifically, a flight controller Pixhawk
3.6.5 is installed on this hexacopter drone, which is connected
to a companion computing device, Raspberry Pi 3b single-
board computer (RPi). By MAVLink protocol, the Pixhawk
controller keeps sending UAV battery voltage information
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Fig. 2. A practical speed-related energy consumption model based on our
real-world flight test. The power consumption is related to the UAV speed via
a convex function, e.g., it first decreases and then increases as speed increases.

to the RPi. We further install a current module ACS712 to
monitor real-time UAV battery current values, which are read
by the RPi via an I2C communication protocol. With both the
voltage and current values collected, it is easy to compute the
power consumption of the UAV.

In our flight tests, we let the drone fly along a straight
line for no longer than 1000m, and we vary the speed from
0m/s (hover) to 18m/s with step 3m/s. Fig. 2 shows a UAV
during our flight test. Flight test on each speed is repeated
10 times and the mean value is used to alleviate anomalies
from individual trials. The experiment results are presented
in Fig. 2, which provides a comprehensive understanding on
the relationship between flight speed and the UAV power
consumption.

The results clearly show that neither the distance-related
energy model nor duration-related energy model holds. The
flight power is a convex function of the flight speed, more
specifically, the flight power of UAV first decreases and then
increases as flight speed increases. We also notice that our
findings are consistent with measurement results of pioneer
researchers [19]. Most recently, such model has been verified
by a theoretical analysis [11]. A similar energy model is
discovered by measurement in [?] as well. As a conclusion,
the speed-related energy consumption model is more practical
and more general than other existing models used for wireless
communication.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We assume a set of GNs, e.g., wireless sensors and IoT
devices, are unevenly distributed along a straight line, such
as a power transmission line, a road, a water/oil/gas pipe or a
river/coast, to perform monitoring task and sensing data. There
are n GNs and they are indexed according to their locations,
as GN i, i = 1, 2, · · · , n. A UAV flies over such straight line
to collect sensed data from these GNs. The UAV is assumed
to fly at a fixed height starting from an initial position towards
a destination position. The UAV can fly slow or fly fast, but it
can never fly back. We use an axis to represent such straight
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Fig. 3. Each GN i requires a minimum time τi for data transmission to
the UAV and the UAV collects data from one GN at a time. The problem
is to determine the speed of UAV, such that each GN i has enough time to
upload data within its transmission range (si, fi) and the UAV flight energy
is minimized. On the one hand, if the UAV flies slow, it has time to collect
data yet consumes more flight energy; on the other hand, fly fast may reduce
energy consumption but shorten transmission time and may cause incomplete
collection. Therefore, the best trade-off must be found.

line flight path, as in Fig. 3. Without loss of generality, we
assume initial position is at the original and d on the axis
represents distance d to the initial position.

Every GN has two transmission rates to work on: one is
faster and the other slower. If the faster rate is adopted, the
corresponding transmission range is smaller. This rate is used
for data collection, and its range is called data transmission
range. While the slower rate is with a larger transmission
range, and is used to deliver control information, for example
initialize connect and prepare for data transmission. Let the
data transmission range of GN i be denoted as (si, fi). So a
UAV can collect data if si ≤ d ≤ fi, where d represent the
location of the UAV. Assume s1 = 0. si is called starting
position and fi is called ending position. Each GN has a
certain amount of data waiting to be collected. Let the minimal
time require for the UAV to finish data collection from GN
i be denoted as τi, which can be calculated given the data
amount and the data transmission rate of GN i. Note that τi
does not necessarily equal between GNs.

Assume GNs are heterogeneous, so they have different but
aligned transmission ranges. That is, the range size (fi − si)
varies from GN to GN. Assume 0 = s1 < s2 < . . . < sn,
then we have 0 < f1 < f2 < . . . < fn = D. This is because
range sizes are similar and no two GNs are placed closely to
monitor the same location. Note that, d = 0 and d = D is the
UAV initial position and destination position. An example of
the settings are given in Fig. 3. We assume every two adjacent
GNs have overlap transmission range, otherwise there is a gap
between them so this problem can be divided into two smaller
independent sub-problem, because the speed schedule before
and after this gap does not affect each other. There are n
starting positions and n ending positions in total. Assume no
two points overlap together, if they do, we can treat them being
separated by an extremely small distance.

The UAV speed scheduling is represented by the speed
scheduling function, that determines the UAV flight speed
for any given time t, denoted as v(t). The position of the
UAV, e.g., the distance from the initial point on the axis, can
therefore be denoted by the following integration.

d(t) =

∫ t

0

v(τ) dτ. (1)



Function d(t) is called the distance accumulation function,
which is obviously a continuous monotonically increasing
function.

We assume the UAV collects data from GNs when it is
flying, but it collects from one GN at a time because they
share the same communication channel. Since the transmis-
sion ranges are overlapped but aligned, it is clear that the
UAV collects data from GN in the order of their locations,
e.g., following their index order. Therefore, there must be a
switching time at which the UAV finishing collecting data from
GN i and starting to collect from GN i + 1. Let ti denote
such a switching time. There are all together n− 1 switching
time among the n GNs. Then, ti−1 is named the collection
starting time and ti named the collection finishing time for
GN i, i = 1, · · · , n. Because the collection must be within its
transmission range (si, fi), we must have the following range
constraint,

si ≤ d(ti−1) < d(ti) ≤ fi, ∀i. (2)

Because τi is the minimal transmission time require for the
UAV to finish data collection from GN i, Hence, we have the
following completion constraint,

ti − ti−1 ≥ τi, ∀i. (3)

Let p(v) denote the flight power for a given UAV flight
speed v. The energy consumption of UAV, denoted by E, can
be calculated by the following equation.

E =

∫ tn

t0

p(v(t)) dt. (4)

Given the models described above, we are ready to define
the problem.

Definition 1 (USS-GTS problem). Given a set of GNs and
models mentioned above, the UAV speed scheduling and GN
transmission switching (USS-GTS) problem is to find a UAV
speed scheduling function v(t) and transmission switching
times ti, i = 0, 1, · · · , n, such that the energy consumption
in Eq.(4) is minimized while range constraint Eq. (2) and
completion constraint Eq. (3) are satisfied.

This problem is called offline problem if all information
is known before schedule; it is called online problem if GN
information is not unavailable unless the UAV flies into the
control information delivery range. We call the speed schedul-
ing function in an optimal solution of the offline problem the
optimal speed scheduling function, which is denoted as vopt(t).

IV. CROSSING-THE-ROOMS PROBLEM AND SOME
OPTIMAL PROPERTIES

In this section, we first redefine the USS-GTS problem,
mapping it to the crossing-the-rooms problem, and then pro-
vide some interesting optimal properties for it.
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Fig. 4. The distance accumulation trajectory d(t) crosses the rooms. For
GN i, we draw a rectangle (virtual) Room i: north wall d = fi, south wall
d = si, west wall t = ti−1, east wall t = ti, while ti − ti−1 ≥ τi. A
feasible trajectory d(t) must cross through all these room and pass through
doors. The crossing-the-rooms problem essentially asks two questions: (1)
how to construct the rooms, especially how to determine the length of each
room, (2) how to design the trajectory crossing all the rooms and passing
through doors, such that the UAV energy is minimized.

A. Crossing-the-Rooms problem

We first introduce the time-distance diagram. On a time-
distance diagram, any point (t, d) represents reaching position
d at time t. Originally, at t = 0, the UAV is at d = 0.
Therefore, the distance accumulation function d(t) can be
plotted as a curve on this diagram, named as distance ac-
cumulation trajectory, which starts at the origin (0, 0). The
speed scheduling function v(t) is essentially the slope of the
distance accumulation trajectory. Hence, finding the optimal
UAV speed scheduling is equivalent to finding the optimal
distance accumulation trajectory on a time-distance diagram.

As shown in Fig. 4, such trajectory does not go freely on
the diagram, it has constraints. These constraints come from
the range constraint and the completion constraint imposed
on the speed scheduling function v(t). More specifically, the
range constraint indicates any GN i has a spatial constraint on
limited transmission range, between d = si and d = fi; and
the completion constraint indicates a temporal constraint on
required transmission times, between t = ti−1 and t = ti,
where ti − ti−1 ≥ τi. Consequently, for GN i, we draw
a rectangle Room i: the north wall at d = fi, the south
wall at d = si, the west wall at t = ti−1, the east wall
at t = ti. Since ti−1 and ti are the collection starting time
and collection finish time for GN i, between which the UAV
must fly within transmission range (si, fi), so the distance
accumulation trajectory must be within such rectangle region.
Therefore, we construct a serial of virtual rooms for a set of
GNs, and Room i is with width (Y-axis) (fi − si) and length
(X-axis) (ti − ti−1). Between two adjacent rooms, Room i
and i + 1, there is a Door i connecting them. The door is at
t =

∑i
j=1 τj and with size (si+1− fi), as shown in Fig. 4. A

feasible distance accumulation trajectory must cross through
all rooms and pass through doors.

The crossing-the-rooms problem essentially asks:
(1) how to construct the rooms, especially how to determine
the length of each room, and



(2) how to design the trajectory crossing all the rooms and
passing through doors,
such that the UAV energy is minimized. Note that the shape
of this trajectory directly determines the energy consumption
because a convex function relates the flight speed and the
power consumption.

Solving the crossing-the-rooms problem is equivalent to
solving the USS-GTS problem. This is because the first
question is equivalen to asking the GN transmission switch-
ing times; while the second question is equivalen to asking
the UAV speed scheduling function. We will introduce the
looking before crossing rooms algorithm to optimally solve
the crossing-the-rooms problem which is inspired by the data
flow model in [20]. The solution is uniquely mapped to the
solution for the original USS-GTS problem.

B. Some optimal properties

An immediate lemma follows directly from the above
discuss.

Lemma 1. A feasible distance accumulation trajectory must
be within the rooms.

We want to find amongst all feasible trajectories the one
with the minimal energy consumption.

Lemma 2. For any given two time intervals, the UAV con-
sumes the minimum energy if and only if a common flight
speeds is used for both time intervals (if allowed).

Proof. See Appendix A

We have the following theory on the trajectory as a direct
result from Lemma 2.

Theorem 1. The optimal trajectory is straight between any
two points, as long as this is feasible.

Any non-straight trajectory between two points can be
straighten to have the same slope, i.e., speed, to save energy.
This method is called straightening.

From Fig. 2, it can be easily seen that there is a speed
at which the power consumption is the lowest. Let such
speed denoted as v#. Note that, flying at v# only means that
the UAV consumes the minimum power. The flight energy
consumption is not necessarily minimized, because speed v#

may be slow and cause a long duration to cover a certain
distance. Therefore, the next lemma introduces a speed v∗

that minimizes the energy consumption.

Lemma 3. For any given flight distance, the UAV consumes
the minimum energy if and only if it flies at speed v = v∗,
where v∗ is a constant as long as p(v) is given and fix.

Proof. See Appendix B.

We have the following theorem on the trajectory.

Theorem 2. Any point of the optimal trajectory has a slope
no larger than v∗.

Proof. See Appendix C.
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Fig. 5. The common starting position case. We first construct n rooms with
minimal time as their length, i.e., Room i with length τi. Then, standing at
the origin, we look to the east. If multiple northern doorjambs is in view, we
choose the farthest one and cross the rooms to walk there. Standing at the
new position, we repeatedly look east and choose the farthest doorjamb as
the next stop, until we reach the destination. In case trajectory slope is higher
than v∗ in some rooms, we reconstruct these rooms by enlarging the length
such that the slope equals v∗.

V. COMMON STARTING AND ENDING POSITION CASES

How to construct all these rooms and how to design an
optimal trajectory crossing these rooms, they are still very
challenge questions. To obtain some useful insights, this
section studies two special cases, i.e., the common starting
position case and the common ending position case.

A. The common starting position case

In this case, every GN has the same transmission range
starting position, s1 = s2 = · · · = sn = 0. But their ending
positions are different: 0 < f1 < f2 < .. < fn = D.
This special case is referred as the USS-GTS problem with
common starting position. Before we present the looking
before crossing virtual rooms algorithm that produces the
optimal trajectory, we would like to introduce some properties
of the optimal trajectory.

Lemma 4. The optimal trajectory changes its direction only
by increasing slope.

Proof. See Appendix D

Lemma 5. The optimal trajectory changes its direction only
at a northern doorjamb.

Proof. See Appendix E

The optimal trajectory therefore can be easily determined if
all the optimal doorjambs at which the trajectory changes are
known. But how to determine these doorjambs? We present
the looking before crossing technique in three phases.

In the first phase, set length for each room i as τi, the
minimal value. Obviously, these rooms have their south wall
at the same location d = 0, while north walls are different, d =
fi. There is no need to consider the south wall and southern
doorjamb. The east wall of Room i (west wall of Room i+1)
is at t =

∑i
j=1 τj , as shown in Fig. 5.

In the second phase, i.e., the main steps, the core idea is
quite simple. Standing at the current position (initially at the



origin), look to the east. Multiple northern doorjambs may be
in view. We choose the farthest northern doorjamb in view and
cross the rooms to walk there. Standing at the new position,
we repeatedly look east and choose the farthest doorjamb as
the next stop. Assume the northeast corner of the last room
is a virtual northern doorjamb, this procedure stops until no
room to cross.

In the third phase, we modify and reconstruct some rooms
if the slope is higher than v∗. The room lengths are enlarged
such that the slope equals v∗.

We present the formal steps of this method in Algo-
rithm USS-GTS-COSTART.

Algorithm 1: USS-GTS-COSTART

1 k = 0, t0 = 0, f0 = 0;
2 for i = 1 to n do ti = ti−1 + τi ;
3 while k < n do
4 knv = arg min

k<i≤n
(fi − fk)/(ti − tk);

5 vnv = (fknv − fk)/(tknv − tk);
6 if vnv > v∗ then break ;
7 Connect (tk, fk) and (tknv , fknv );
8 k = knv ;
9 end

10 if k < n then
11 tn = (fn − fk)/v∗ + tk;
12 Connect (tk, fk) and (tn, fn);
13 end

These three phases are at Line 2, Line 3-9 and Line 10-
13, respectively. It can be seen that the second phase, i.e.,
the while loop, is the main phase. In each while iteration,
one piece of the trajectory is calculated by finding the next
stop point. knv at Line 4 is such point and vnv at Line 5 is
the trajectory slope. After the first changing point is found,
the next stop point can be computed using the same method,
but from the new position. Note that if the computed speed is
larger than v∗ as in Line 6, the third phase begins.

Theorem 3. Algorithm USS-GTS-COSTART produces the op-
timal distance accumulation trajectory for the offline USS-GTS
problem with common transmission range starting position
within O(n2) steps.

Proof. See Appendix F.

B. The common ending position case
We study another special case in this subsection and obtain

more properties on the optimal trajectory. In the common
ending position case, every GN has the same transmission
range ending position, f1 = f2 = · · · = fn = D. This is
called the USS-GTS problem with common ending position.

Similar to previous special case, we have the follow prop-
erties for the optimal trajectory. The proofs are similar to
previous ones, and are left to the readers because of space
limitation. It is suggested to draw a graph for this case similar
to Fig. 5 to help understand the following two lemmas.

Lemma 6. The optimal trajectory changes its direction only
by decreasing slope.

Lemma 7. The optimal trajectory changes its direction only
at a southern doorjamb.

We apply the looking before crossing technique to find
the optimal distance accumulation trajectory in three phases.
We first construct rooms with minimal length. Then, we
find the next stop by looking east and choose the farthest
southern doorjamb. We then cross the rooms to walk there
and repeatedly looking and crossing. Assume the northeast
corner of the last room is a virtual southern doorjamb, this
procedure stops until no room to cross. It is possible that in
some rooms, the trajectory has slope large than v∗ during the
process. Suppose this happens for the first k rooms, then we
enlarge these rooms in length such that the trajectory has slope
equals v∗.

A formal algorithm and its proof is omitted because of the
space limitation. They are similar to the previous algorithm
and Theorem 3.

VI. LOOKING-BEFORE-CROSSING ALGORITHM FOR
GENERAL CASE

In the general case, there is no restrict on the range starting
positions and ending positions. As a result, the optimal trajec-
tory changes its direction by both increasing and decreasing
slope. The following lemma states how it changes.

Lemma 8. The optimal trajectory changes its direction only
at doorjambs: increasing slope at a northern doorjamb, or
decreasing slope at a southern doorjamb.

This lemma is an combination of Lemma 4, 5, 6 and 7,
therefore the proof is similar and left for the readers.

The looking before crossing algorithm produce the opti-
mal trajectory in three phases. In the first phase, rooms are
constructed, i.e., each Room i with length τi, as shown in
Fig. 4. Note that, each room may have a different south
and north walls. In the second phase, we find a walking
trajectory crossing all the rooms, starting at the origin and
ending at the northeast corner. In the third phase, some rooms
are reconstructed by enlarging their length. Note that, when a
room length is enlarged, all the rooms on the east are moved
accordingly. The first and third phase have been discussed in
details in previous section.

The high level idea of the second phase, i.e., the main part
of the looking before crossing algorithm, is as follows. It is
obvious that, if standing at the origin, we can view directly
(through doors) the northeast corner, then this straight line
is the optimal trajectory. However, if the view is blocked by
walls, we need to find other way around. It is clear that
the view angle is narrowed door after door. After looking
through the first door, the northern boundary of the view angle
is by the northern doorjamb and the southern boundary by
the southern doorjamb. The view angle is further narrowed
after looking through more doors, until it is blocked entirely.
Suppose, standing at the origin, we can see as far as Room i,
see part of its wall. Door i may be on the northern/southern
side of the seen wall, we then walks along the north/south
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Fig. 6. Looking before crossing rooms. In (a), standing at the origin, the view angle through door 1 is in pink and angle through door 2 is in red. No view
through door 3, which is beyond the northern boundary of the current (red) view angle. Therefore, we walk along the northern boundary, reaching the farthest
doorjamb. In (b), standing at the new position, two new view angles are in pink and red respectively. Since the northeast corner is beyond southern boundary
of the current view angle, we walk along the southern boundary to the farthest doorjamb. In (c), it can be seen that the lasted trajectory slope, in room 3 and
4, is larger than v∗, hence we enlarge the lengths of room 3 and 4 to reduce the slope to v∗. In (d), all room lengths and trajectory are determined.

Algorithm 2: USS-GTS-GENERAL

1 k = 0, d = 0, t0 = 0;
2 sn+1 = fn // dummy for loop purpose
3 while k < n do
4 vvn =∞, vvs = 0;
5 for j = k + 1 to n do
6 tj = tj−1 + τj , vdn = (fj − d)/(tj − tk),

vds = (sj+1 − d)/(tj − tk);
7 if vds > vvn then
8 vm = vvn, km = kvn, dm = fkvn ;
9 break;

10 else if vdn < vvs then
11 vm = vvs , km = kvs , dm = skvs+1;
12 break;
13 end
14 if vvn > vdn then vvn = vdn, kvn = j ;
15 if vvs < vds then vvs = vds , kvs = j ;
16 end
17 if vvn == vvs then vm = vvn, km = n, dm = fn ;
18 if vm > v∗ then
19 x = d;
20 for i = k + 1 to km do
21 ti = max{(si − x)/v∗, τi}+ ti−1;
22 x = x+ (ti − ti−1)v∗;
23 end
24 end
25 Connect (tk, fk) and (tkm , dm);
26 d = dm, k = km;
27 end

boundary of the view angle, reaches and stops at the farthest
doorjamb. Standing at the new position, the looking before
crossing strategy repeats in the same way. Eventually, there is
no room to cross.

We present the formal steps of this method in Algo-
rithm USS-GTS-GENERAL.

Theorem 4. Algorithm USS-GTS-GENERAL produces the
optimal distance accumulation trajectory for the offline USS-
GTS problem within O(n2) steps.

Proof. See Appendix G.

An example of the proposed looking before crossing algo-
rithm is illustrated in Fig. 6.

VII. ONLINE HEURISTIC AND SIMULATIONS

A. Online Heuristic

In the previous section, an offline algorithm has been pro-
posed to compute the optimal UAV speed scheduling and GN
transmission switching for the USS-GTS problem. However,
it is based on all GN information, including data transmis-
sion range starting position, ending position and the required
transmission time. In practical, it is not always possible for
the UAV to know all the GN information beforehand.

In this subsection, other than the data transmission range,
we define the control communication range [21], which is
generally much larger, but with slower transmission rate. In
our online algorithm, we assume the information of a GN
can be obtained only if the UAV has entered its control
communication range.

The overview of the proposed online speed scheduling
policy proceeds as follows [22]. The GNs keep broadcasting
its information such as data amount to be transmitted, data
transmission rate, location information, transmission starting
position and ending position. Whenever the UAV enters a
new GN’s control communication range, such information is
recorded. In the way, the UAV keeps a list of active GNs, and
deletes a GN if all its data has been collected. Once this list is
updated, it invokes the offline algorithm to compute a speed
schedule.

B. Simulation settings and results

In this subsection, we implement the proposed offline and
online algorithm respectively. Since there is no other algorithm
focusing on the same USS-GTS problem with practical UAV
flight energy model, we compare the online algorithm against
the optimal offline algorithm.

In simulations, the power-speed function p(v) is set to be
p(v) = 0.07v3 + 0.0391v2 − 13.196v + 390.95, which is
obtained from our real world measurements data. It can be
easily computed that v# = 7.74m/s and v∗ = 13.99m/s.
We consider a straight path with total length 10km. Along
such path, n GNs are assumed to be randomly deployed. For
these GNs, the control data transmission range size is set to
be 50m, the average data transmission range size be b and the
average time require for data transmission be τ . Parameters n,



75 80 85 90 95 100 105

Number of GNs

7

7.5

8

8.5

9

9.5

10
E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

105

online heuristic

offline optimal

(a)

30 40 50 60 70 80 90 100

Average data transmission range (m)

8.2

8.4

8.6

8.8

9

9.2

9.4

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

105

online heuristic

offline optimal

(b)

5 10 15 20 25 30

Average required transmission time for GNs (s)

4

6

8

10

12

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

105

online heuristic

offline optimal

(c)

Fig. 7. The performance comparison in UAV energy consumption. The default setting is: number of GNs n = 90, average transmission range size b = 50
meters, average required transmission time τ = 20 seconds. The three parameters are changed one at a time as in sub-figures.

b and τ will be changed one at a time to evaluate their impacts
on algorithm performance. For every parameter setting in our
simulation, we randomly generate 100 instances of GNs, and
use the mean results for comparisons.

The simulation results are presented in Fig. 7. We can see
from Fig. 7(a) that the more GNs deployed, the more energy
consumption for the UAV. This is not hard to explain: more
GNs means longer total collect data time required, hence more
time for the UAV to finish this task. Fig. 7(b) shows that,
with the increase of average data transmission range size, the
UAV energy consumption drops. This is because: the larger
data range, the more overlap between GNs, the more flexible
to schedule the transmission, the speed is more ‘equal’. It
is shown in Fig. 7(c) that the larger required transmission
time for GNs, the more energy consumption. Moreover, the
energy consumption increases linearly with the GN required
transmission time. This is obvious: more transmission time
means more power spent to fly. In all of three subfigures, the
online heuristic produce a result close to the offline optimal,
generally within 102% of the optimal minimal result.

As a conclusion, the online algorithm performance is near
optimal, because our online algorithm is designed based on
the offline optimal properties.

VIII. CONCLUSION

This paper investigated a UAV data collection problem from
GNs deployed along a straight line. Unlike existing works, we
focused on the flight speed scheduling, i.e., control the speed
of the UAV to save energy. Based on our real-world flight tests,
we disclosed a speed-related energy model, distinct from most
existing works in the literature on wireless communication,
which usually assume the distance-related or duration-related
energy model. We proposed a novel looking before crossing
algorithm on the time-distance diagram, to optimally solve the
offline problem, where all information on GNs is available
before scheduling. For the online problem, we presented a
heuristic based on the offline algorithm. Simulations showed
this online heuristic was within 102% of the offline optimal
minimal value. Our study on the practical flight energy model
and speed scheduling have shed light on a new direction on
UAV-aided wireless communication.
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APPENDIX

A. Proof of Lemma 2
Suppose there are two time intervals with duration lengths τx and

τy . The UAV flight speeds are constant inside each duration, and they
are vx and vy , respectively. We need to show that using the average
speed v̄ =

vxτx+vyτy
τx+τy

in both intervals is more energy efficient than
using any two different speed, vx 6= vy .

p(
vxτx + vyτy
τx + τy

) = p(
τx

τx + τy
vx +

τy
τx + τy

vy)

(a)
<

τx
τx + τy

p(vx) +
τy

τx + τy
p(vy). (5)

The inequation (a) is because the convex property of the function
p(v) and the fact that vx 6= vy . Hence, we have

(τx + τy)p(
vxτx + vyτy
τx + τy

) < τxp(vx) + τyp(vy),

which clearly shows that use a common speed can reduce energy
consumption.

B. Proof of Lemma 3
Assume the given flight position interval is (dx, dy), hence the

flight distance is L = dy − dx. Let t be the time spent to cover this
distance. According to Lemma 2, the UAV consumes the minimum
energy only when flying at a constant speed, v = L

t
. So, the total

energy consumption E0 = tp(v) = p(v)
v
L.

Define a function h(v) = p(v)
v

, so h′(v) = 1
v

(p′(v) − p(v)
v

).
Since p(v) has its minimum value at v#, when v ∈ (0, v#), p(v)
decreases, so p′(v) < 0, then h′(v) < 0. When v ∈ (v#,+∞), p(v)
increases, so p′(v) > 0 but the sign of h′(v) depends on function
p(v). More specifically, the sign of h′(v) depends on which one is



larger, p′(v) or p(v)
v

. For any given position (v, p(v)), v > v#, on
the speed-power diagram, p′(v) can be represented by the slope of
the tangent line, and p(v)

v
can be represented by the slope of the line

connecting (v, p(v)) to (0, 0). There are two possible cases: the two
slopes equal at some point or they never equal. In case they equal,
equation p′(v) − p(v)

v
= 0 must have a solution, let it be v = vm.

Hence, h′(v) < 0 if v < vm, and h′(v) > 0 if v > vm, and
h(v) has the minimum value at v = min{vm, vmax}, where vmax
is the maximum flight speed. In case they never equal, h′(v) < 0 for
∀v ∈ (0, vmax], and h(v) monotone decreases with minimum value
at v = vmax.

As a conclusion, the UAV consumes the minimum energy when
v = v∗, where v∗ is equal to vm or vmax, depending on p(v).

C. Proof of Lemma 2
We only provide the sketch of the proof. Intuitively, for an interval

in which the UAV speed exceeds v∗, we modify it to use v∗ instead,
which is more energy-efficient. In this way, the UAV flies slower
and more time are available to collect data from GNs, so the upload
duration requirements of every GN can still be satisfied.

D. Proof of Lemma 4
Suppose, on the contrary, the optimal trajectory changes its

direction by decreasing its slope at point (t, d), from v1 to v2.
Assume straight line between (t1, d1) and (t, d) is with slope v1,
while straight line between (t, d) and (t2, d2) is with slope v2.
Since v1 > v2, the trajectory between (t1, d1) and (t2, d2) can be
straighten to be a straight line with slope v to save more energy
according to Theorem 1. We next show straighten such two straight
lines is feasible. Because south walls of all rooms are at d = 0,
such straightening generally move the trajectory towards south, not
crossing the south wall. In other words, after the modification, the
UAV spending more time collection data in (d1, d) and less time
in (d, d2) given v1 > v > v2. Since all GNs starting positions are
d = 0, this modification is always feasible. This is a contradiction,
since the optimal trajectory is modified to be even more energy
efficient.

E. Proof of Lemma 5
We prove by contradiction. Consider part of the optimal trajectory,

between point (t1, d1) and (t2, d2). Assume there is only one
changing point (t, d), and it is not a northern doorjamb. We then
try to straighten this two lines. There are two cases depending on
whether connecting (t1, d1) and (t2, d2) directly is feasible. In case
it is feasible, then a contradiction arise since straightening saves
energy. In case it is not feasible, then there must be at least one
northern doorjamb inside the triangle of (t1, d1), (t2, d2) and (t, d).
We therefore choose one as the new slope change point (t′, d′). Let
τ1, τ2, τ

′
1, τ
′
2 be the old and new time spent before and after changing,

i.e., τ1 = t − t1, τ2 = t2 − t, τ ′1 = t′ − t1, τ
′
2 = t2 − t′. Let

v1, v2, v
′
1, v
′
2 be the old and new speeds before and after changing,

i.e., v1 = (d − d1)/τ1, v2 = (d2 − d)/τ2, v
′
1 = (d′ − d1)/τ ′1, v

′
2 =

(d2 − d′)/τ ′2. Then, we must have v1 < v′1 and v2 > v′2. Since
the distance covered and duration spent do not change, we have the
follow equations.

v1τ1 + v2τ2 = v′1τ
′
1 + v′2τ

′
2,

τ1 + τ2 = τ ′1 + τ ′2.

Combine the two equations by division, we have

τ1
τ1 + τ2

v1 +
τ2

τ1 + τ2
v2 =

τ ′1
τ ′1 + τ ′2

v′1 +
τ ′2

τ ′1 + τ ′2
v′2.

By the convexity of the p(v) function and v1 < v2, we have

τ1
τ1 + τ2

p(v1) +
τ2

τ1 + τ2
p(v2) >

τ ′1
τ ′1 + τ ′2

p(v′1) +
τ ′2

τ ′1 + τ ′2
p(v′2).

So,
τ1p(v1) + τ2p(v2) > τ ′1p(v

′
1) + τ ′2p(v

′
2).

Thus, the optimal energy consumption is further improved, which is
a contradiction.

F. Proof of Theorem 3
Since the algorithm repeats to find all trajectory pieces one by one,

we prove the produced trajectory is optimal by showing its first piece
is optimal. The first trajectory is set at either Line 7 or Line 12. We
will prove both of they are optimal.

The farthest northern doorjamb in view knv is computed at line 4,
while its corresponding speed is given vnv at line 5. (1). We now
prove, in case vnv ≤ v∗, connecting (tk, fk) and (tknv , fknv ) is the
first optimal trajectory piece, where k = 0 in the first iteration.
Suppose otherwise, the first piece ends at other point (t, d). Ac-
cording to Lemma 5, point (t, d) must be a northern doorjamb.
Let (t, d) = (tkopt , fkopt), for some kopt 6= knv . It is impossible
kopt > knv , because northern doorjamb beyond knv is not in view,
such trajectory piece will go outside rooms which is infeasible. It
is impossible kopt < knv as well, because vnv is the smallest by
Line 4 and 5, if the first trajectory piece ends at any doorjamb before
knv , then there must be a following trajectory piece with a smaller
slope, contradicting to Lemma 4. Hence, the first case is proved.
(2). In case vnv > v∗, connecting (tk, fk) and (tn, fn) is the first
optimal trajectory piece, where k = 0 in the first iteration. Because
tn = (fn−fk)/v∗+tk at Line 11, we have the slope of this trajectory
piece as v∗. Beside, this trajectory piece is feasible, because, vnv is
the smallest slope and v∗ is even smaller. By Lemma 3, using v∗ is
optimal.

The dominated operation in this algorithm is the while loop. Inside
the loop, the computation of knv at Line 4 dominates, which takes n
steps to calculate and find the minimum value. The while loop repeats
at most n times, because in each iteration, variable k increases at least
1, and loop terminates after k ≥ n. Therefore the time complexity
of this algorithm is O(n2).

G. Proof of Theorem 4
Like the proof of Theorem 3, we prove the produced trajectory is

optimal by showing its first piece is optimal. The first trajectory piece
ends at (1) a northern doorjamb as at Line 8, (2) a southern doorjamb
as at Line 11, and (3) directly at the destination as at Line 17.

The case (3) is obviously optimal. We prove (1) is optimal as
well, and the case (2) is symmetry and left for the readers. In case
(1), because the destination is not in directly view, then, according
to Lemma 8, we know the first piece ends at a doorjamb point. It
is known that at Line 8, the view angle has its northern boundary
bounded by the northern doorjamb of Door kvn. At the same time,
southern boundary bounded by the southern doorjamb of Door kvs .
The southern doorjamb of the next door j is outside the view angle,
on its north side. The algorithm has chosen the northern doorjamb
of Door kvn as the ending of the first piece of trajectory. Suppose,
on the contrary, another doorjamb is, instead, the optimal ending
point of the first piece. Then, such doorjamb must not beyond j,
because that will be infeasible (trajectory not within rooms). Such
doorjamb must not be a northern doorjamb before or after kvn, because
otherwise the trajectory can be improved. Similar, such doorjamb
must not be a southern doorjamb before or after kvs . As a conclusion,
the only possibility is the such doorjamb be the southern doorjamb
of door kvs . We shown the resulting trajectory can be improve, too.
To pass through door j, such trajectory must go north, crossing the
northern boundary of the view angle. Let such crossing point be (t, d).
By Theorem 1, the trajectory between point (tk, dk) and (t, d) can
improved by straightening. This is a contradiction.

The while loop repeats one most n times, because each iteration
k increases at least 1, and loop terminates after k ≥ n. Inside the
while body, the for loops no more than n times. Therefore the time
complexity of this algorithm is O(n2).
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