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Abstract—Wireless power transfer (WPT) technique enables
wireless charging/recharging, thus is a promising way to power
wireless devices’ transmissions. Because current WPT technique
requires a wireless device to stop transmitting data when receiv-
ing power, and also because the received power in this way is
limited, careful scheduling is needed to decide when the device
should receive power and when it should transmit such that
data can be efficiently transmitted. This paper assumes the most
fundamental point-to-point White Gaussian Noise channel is used
for data transmission and attempts to obtain an optimal schedul-
ing such that a sequence of data packets can be transmitted
with the minimum delay. It is discovered that, for all (energy
receiving, data transmitting) cycles, except the last one, the
optimal transmission rate should be a constant which is called the
wOPT rate. Based on this discovery, this paper optimally solves
the offline delay minimization problem. Then, an online heuristic
scheduling algorithm is proposed, which either receives energy
or transmits at the wOPT rate. Simulations have demonstrated
its efficiency. The discovery of the wOPT rate reveals an essential
property of WPT, thus is expected to make significant impact in
the field of WPT.

I. INTRODUCTION

With the rapid development of mobile devices and the
Internet of Things, current battery technique is becoming
further and further from satisfactory. The current batteries are
typically large in size, heavy in weight, low in capacity, and
slow to charge. Wireless power transfer (WPT) provides an
alternative option to overcome these disadvantages. Moreover,
WPT technique enables devices to be battery-free, which
has many potential applications in Internet of Things. WPT
technique also provides a new approach toward the perpetual
wireless sensor networks.

In industry, groups and companies have already been work-
ing on the commercialisation and standardization of WPT
techniques. For instance, Qi [1] is a new wireless power
transfer interface standard, which is becoming increasingly
popular; WiTricity is a now the biggest company dedicated
to wireless power transfer who holds an important patent for
it [2]. A large number of multinational corporations such as
Samsung, Huawei, Sony, Intel and Toyota have been involving
in the Qi standard or WiTricity licensing. Their productions are
being available quite recently on the market, such as wireless
chargers for cell phones, or even cell phones with built-in
wireless charging capability. According to an Intel executive,
wireless charging will reach PCs in 2016 [3]. By then, laptops
will be able to recharge when placed on tables, pads or surfaces

supporting power delivery [3].
In academia, increasing interests are turning to WPT. In a

point-to-point energy transfer experiment [4], wireless power
of 3.5 mW has been harvested from the RF signals at distances
of 0.6 meters. One of the most significant work is by V. Liu et
al. [5]. They design and make a new type of battery-free device
that communicates with each other by energy harvested from
television broadcast signals. A most recent work by V. Talla
et al. [6] builds the first power over Wi-Fi system that delivers
power via commercially available Wi-Fi chipsets. Such system
can provide far field wireless power without compromising the
network’s communication performance.

H. Ju et al. [7] study a new type of access point called
H-AP, which provides wireless energy to user devices and
collects information from them. Since the power transfer is
in the downlink (DL) while the data transmission is in the
uplink (UL), they propose a ‘harvest-then-transmit’ protocol
to coordinate the two operations to maximize network through-
put. Such problem is further studied in a large-scale wireless
powered communication network by Y. L. Che et al. [8]. G.
Yang et al. [9] further extend these works by assuming such
H-APs are equipped with large number of antennas.

These related works either study the feasibility of WPT by
designing hardwares or study the WPT problem from the point
view of network throughput maximization. However, guaran-
teeing the maximum network throughput does not necessarily
guarantee a specific user device’s data transmission delay. In
many real world applications, the data transmission delay is
required as a part of quality of service (QoS) for time-sensitive
applications.

In this paper, we investigate a fundamental scheduling prob-
lem for a wireless device such that a sequence of dynamically
arrived data packets can be transmitted with the minimum
delay. As previous work [7]–[9], we assume the ‘harvest-
then-transmit’ protocol for the wireless transmitter device. The
transmitter has to decide 1) when to receive energy and when
to deliver data, 2) what transmission rate should be used to
deliver data in each transmission period, 3) how often to repeat
the (energy receiving, data transmitting) cycles? The ultimate
goal is to minimize the completion time with all packets
transmitted. We assume the most fundamental point-to-point
single-user additive White Gaussian Noise (AWGN) channel
for data transmission.

In our research, we need to address several challenges.
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According to Shannon-Hartley Theorem on wireless channel
capacity, a low transmission rate is preferred to save energy,
while a high rate is preferred to shorten transmission delay.
Therefore, a major challenge lies on the trade-off between
the following two strategies. On one hand, the more time to
receive power, the more energy is charged to the device which
allows a higher transmission rate and shorter time to deliver
data. On the other hand, the more time to deliver data, the
less energy is required and less time is needed to charge the
device. To minimize the total time on receiving power and
sending data, the best trade-off must be found.

Another major challenge is that the device battery has a
limited capacity. When it is full, no more energy can be
added; while it is empty, no data can be transmitted. Therefore,
the transmitter must alternatively change its operations, from
charging the battery to sending data, and vice versa. This adds
one more difficult factor to our problem.

The contributions is summarized as follows.
• We formally define the delay minimization scheduling

problem for the transmission channel with wireless power
transfer capability.

• We discover that although the optimal time duration for
each (energy receiving, data transmitting) cycle depends
on the initial energy of the battery and sizes of packets,
the optimal transmission rate for each cycle, except the
last cycle, is constant and dependents on neither of them.
Such rate is called the wOPT rate.

• Based on the wOPT rate, we design an optimal schedul-
ing algorithm to solve the offline delay minimization
problem. In the offline optimal solution, we determine
for the transmitter the optimal switching point between
receiving energy and sending data at wOPT rate until the
very last cycle which needs higher rates to speed up the
completion.

• For the online problem, we provide a heuristic strategy
that switches between receiving energy and sending data
at wOPT rate for the entire period.

• The discovery of the wOPT rate reveals an essential
property of WPT, thus is expected to make significant
impact on other scheduling problems in the field of WPT.

The organization of this paper is as follows. Section II for-
mally defines the delay minimization scheduling problem. The
notion of wOPT rate is introduced in Section III. Section IV
studies the offline problem, and utilizes the wOPT rate to
optimally solve this problem. An online heuristic algorithm
is proposed in Section V, followed by simulations that show
its efficiency. Related works are introduced in Section VI.
Section VII concludes this paper.

II. PROBLEM FORMULATION

A. System model

Suppose an AWGN channel consists of a wireless powered
transmitter and a receiver. Let P = {P1, P2, . . . , Pn} be a set
of n packets waiting in a queue to be transmitted from the
transmitter to the receiver, as shown in Fig. 1. Each packet Pi
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Fig. 1. A wireless powered transmission system
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Fig. 2. Charging phases, sending phases and cycles

has a size Bi, an arrival time ai, and is denoted as Pi(Bi, ai).
We assume each packet has a distinct arrival time such that
a1 < a2 < . . . < an. If two or more packets arrive at the
same time, we combine them into a single packet with its size
being the sum of all sizes in these packets. The transmission
of packet Pi can start only after its arrival time ai. This is
called the causality constraint [16].

The wireless transmitter is capable of receiving energy
wirelessly via WPT technique. When receiving energy, its
battery is charged; the received energy then is used to send
data at a later time. We therefore define the charging phase
and sending phase, respectively. These two phases form a
(energy receiving, data transmitting) cycle. Following previous
work [7]–[9], a transmitter can either be in the charging phase
or be in the sending phase, but not in both. The transmitter
switches between the two phases alternatively according to
a scheduling algorithm until all data packets are completely
delivered.

Suppose there are m cycles. Thus, there are 2m phases and
2m switches, which occur at time instances {t1, t2, . . . , t2m},
0 < t1 < . . . < t2m. The 2m phases are labeled from 1 to
2m. Phase i starts from time ti−1 and ends at ti. Its length
is denoted as τi, e.g. τi = ti − ti−1. Note that we assume
t0 = 0. When no ambiguity arises, we also use the notation
τi to denote Phase i. Phase 2i−1 (τ2i−1) is a charging phase,
and Phase 2i (τ2i) is a sending phase, i = 1, 2, . . . ,m. Note,
we assume the last phase is a sending phase, this is because if
the last phase is otherwise a charging phase, we can delete it
without affecting the transmission completion time. Therefore,
the set {ti} is called the switch points, meaning phase changes
at such time instances, as shown in Fig. 2.

Let p be the energy transfer speed (amount of energy
received per second) during the charging phases. The speed
is assumed to be a constant speed.



B. Problem formulation

Let H(t) be the total energy charged into the battery in
duration [0, t]. We can calculate H(t) as follows.

H(t) =

{ ∑i−1
j=0 τ2j+1p for t2i−1 ≤ t < t2i∑i−1
j=0 τ2j+1p+ (t− t2i)p for t2i ≤ t < t2i+1

During the sending phases, it is assumed that the transmitter
can adaptively change its transmission rate.

Definition 1. The transmission rate function r(t) : R≥0 →
R≥0 is defined as the transmission rate at time t.

We hence denote the transmission rate as a function of time

r(t)

{
= 0 t in τ1, τ3, . . . , τ2m−1
6= 0 t in τ2, τ4, . . . , τ2m

(1)

The transmission rate r(t) is related to transmission power
pt(t) through a function Eq. (2) in a single user point-to-point
transmission channel [10]–[13], [15]–[18].

r(t) = log(1 + pt(t)) (2)

As a result, the total amount of data transmitted during [0, t]
can be calculated by the following integration,

B(t) =

∫ t

0

r(x) dx (3)

=

{ ∑i
j=1

∫ t2j
t2j−1

r(x) dx t2i ≤ t < t2i+1∑i−1
j=1

∫ t2j
t2j−1

r(x) dx+
∫ t
t2i−1

r(x) dx t2i−1 ≤ t < t2i
(4)

Thus, the causality constraint can be expressed as

B(t) ≤
∑
i:ai<t

Bi, ∀t > 0. (5)

According to Eq. (2) and (1), we have the transmission
power as pt(t) = 2r(t)−1. The total energy consumed during
[0, t] can be calculated by the following integration,

E(t) =

∫ t

0

pt(x) dx (6)

=

{ ∑i
j=1

∫ t2j
t2j−1

pt(x) dx t2i ≤ t < t2i+1∑i−1
j=1

∫ t2j
t2j−1

pt(x) dx+
∫ t
t2i−1

pt(x) dx t2i−1 ≤ t < t2i
(7)

Suppose the battery capacity is Eb and the initial energy in
battery is E0. In any time instance t, the total energy consumed
E(t) can not exceed the received energy H(t) plus the initial
energy E0 in the battery, this is called the energy constraint.

E0 +H(t)− E(t) ≥ 0, ∀t ∈ [0, t2m], (8)

where E0 +H(t) − E(t) is also called the remain energy in
the battery. Such a remain energy can not exceed the battery
capacity.

E0 +H(t)− E(t) ≤ Eb, ∀t ∈ [0, t2m], (9)

Let T = t2m be the end of the last phase, then at T , all
packets must have been completely transmitted. This is called
load constraint expressed by the following equation,

B(T ) =

n∑
i=1

Bi. (10)

Time T is called the transmission delay or completion time.
In this paper, we want to determine total number of phases

2m, all the switch points t1, t2, . . . t2m and the transmission
rate r(t) in all sending phases, such that the required con-
straints (5)(8)(9)(10) are satisfied and the transmission delay
is minimized. The formal definition is given below.

Definition 2 (Delay Minimization Scheduling problem, DMS
problem). Given a set of packets P and a wireless power
transmission system described above, the delay minimization
transmission scheduling problem is to determine the number
of cycles m, all the switch points t1, t2, . . . t2m and the
transmission rate r(t), 0 ≤ t ≤ T such that the causality
constraint Eq. (5), the energy constraint Eq. (8), the battery
capacity constraint Eq. (9) and the load constraint Eq. (10)
are satisfied and the transmission delay T is minimized.

The transmission rate r(t) in the optimal solution for this
problem is denoted as ropt(t) and referred to as the optimal
rate schedule.

III. THE wOPT rate

This section concentrates on a simplified scenario where
only one packet is in P and battery has sufficiently large
capacity, namely DMS-1 problem. A surprising result is that,
in the optimal solution that minimizes the completion time,
the transmission rate depends on neither the packet size nor
the initial energy when the initial energy is below a criterion
(Theorem 1).

Suppose in the DMS-1 problem, the only packet arrives at
time 0 and has a size B. Imagine that if no WPT is available, in
order to minimize transmission delay, we can use a single rate
throughout the transmission to delivery data. The correctness
of such a single-rate transmission lies in the convex property
of the power-rate function Eq. (2). More specifically, if two
transmission rates are used, we can always find a single rate
in between that delivers the same amount of data in a shorter
time. Detailed proof can be found in previous works [10], [11],
[15], [16]. Suppose such single rate is r, then the completion
time τ = B

r . All energy should be used up at the end, thus
the transmission power is pt = E0

τ = E0

B r, where E0 is the
initial energy. Combining with Eq. (2), we have

log(1 +
E0

B
r) =r.

This equation can be solved to obtain the value r,

r =−
W
(
− B ln 2

E02
B
E0

)
ln 2

− B

E0
, (11)



where function W(z) is called the Lambert W function [20],
which has the following property,

W(z)eW(z) = z.

Therefore the completion time can be computed as follows,

τ = B/r = −B/

W
(
− B ln 2

E02
B
E0

)
ln 2

+
B

E0

 . (12)

Note, we can see from Eq. (11) and (12) that both the
transmission rate r and the completion time τ depend on B
and E0.

Now imagine the wireless device has another option that
it can receive wireless power supply to charge the battery.
Since the battery is sufficiently large, it is easy to see that
one charging phase and one sending phase is enough, e.g.
m = 1. This is because if m > 1, we can always combine
all charging phases and all sending phases together without
affecting the completion time. We assume the only charging
phase is with length τ1, and the only sending phase is with
length τ2. In order to minimize completion time, we must use
a single transmission rate in the sending phase. Let it be r.

As a result, the total amount of energy in the battery by
the end of the charging phase is E0 + pτ1; the total amount
of energy consumed in the sending phase is τ2(2r − 1). They
must be equal, thus we have

E0 + pτ1 = τ2(2
r − 1). (13)

Since all data B is completely delivered, we have

τ2 =
B

r
. (14)

As a result, Eq. (13) can be re-written as

E0 + pτ1 =
B

r
(2r − 1). (15)

Multiplying p on both sides of Eq. (14), we get

pτ2 = p
B

r
. (16)

Adding Eq. (15) to Eq. (16), we have

E0 + pτ1 + pτ2 =
B

r
(2r − 1 + p). (17)

We further have

τ1 + τ2 =
B(2r − 1 + p)

rp
− E0

p
. (18)

Eq. (18) shows that the total completion time T = τ1 + τ2 is
a function of variable r, which also depends on the data size
B and the initial energy E0.

We define the function T (r) as

T (r) = τ1 + τ2 =
B(2r − 1 + p)

rp
− E0

p
(19)

Now, an interesting problem is to find the value of r such that
the delay time T (r) is minimized for a given initial energy E0

and data size B. To find this value, let T (r)′ = (B(2r−1+p)
rp −

E0

p )′ = 0. We have

(
2r − 1 + p

r
)′ = 0.

Solving this equation, we get,

r =
W(p−1e ) + 1

ln 2
. (20)

Letting w =W(p−1e ), we define rs as follows

rs =
w + 1

ln 2
. (21)

We called rs in Eq (21) the wOPT rate, standing for the
optimal transmission rate by wirelessly powered transmitter.
When data is transmitted at the wOPT rate rs, the delay
time T (r) is minimized, and the minimum value is T (rs).
The wOPT rate rs is a constant because it depends only on
w =W(p−1e ), which depends only on p and p is a constant.

Note that rs depends on neither data size B nor battery
initial energy E0. However, the two phase lengths τ1 and τ2
depend on both. They can be calculated as follows.

τ2 =
B

rs
, τ1 =

B
rs
(2rs − 1)− E0

p
. (22)

From Eq. (22) we can see that, the wireless power transfer
is necessary (τ1 is positive) only when the initial energy E0

is small E0 ≤ B
rs
(2rs − 1). When E0 >

B
rs
(2rs − 1), energy

in battery is already sufficient to send all B data, the wireless
power transfer is unnecessary. Thus, the minimum delay is
computed by Eq. (12).

We hence summarize and emphasize our conclusion of this
section in Theorem 1, whose correctness follows directly from
the above discussion.

Theorem 1. If the initial energy E0 ≤ B
rs
(2rs − 1), then

the optiaml solution of the DMS-1 problem consists of a
charging phase and a sending phase. The transmission rate
in the sending phase is a constant rs by (21) although the
length of the two phases depend on E0 and B, by (22). If
E0 > B

rs
(2rs − 1), no charging phase is needed, thus the

completion time can be computed by (12).

In fact, the notion wOPT rate is so important that not only it
is the unique optimal rate to achieve the minimum delay, but it
is also the optimal rate for the dual problem. The dual problem
asks to maximize the remain energy when transmitting the
packet before a given deadline. It is not difficult for readers to
follow similar approaches discussed above to solve the dual
problem. We omit details here, but will use this conclusion
directly in later sections.

In later sections, we will show that although the wOPT
rate is derived from the simple scenario, it indeed plays an
important role in the general scenario. Therefore, we conclude
that the discovery of the wOPT rate reveals an essential
property of WPT.



IV. OFFLINE OPTIMAL SOLUTION FOR THE DELAY
MINIMIZAITON SCHEDULING PROBLEM

In this section, we study the offline delay minimization
scheduling problem, where information about all packets in
set P is known, including their arrival time and their sizes.
We first investigate the problem where battery capacity Eb is
sufficiently large and design an optimal algorithm by utilizing
the wOPT rate. We then solve the general problem by taking
the battery capacity Eb into consideration, where Eb can be
an arbitrary small positive value.

A. An optimal solution for the large battery DMS problem

In this subsection, we allow n packets in set P , P =
{P1, P2, . . . , Pn} and Pi(Bi, ai), but still require the battery
capacity to be sufficiently large.

A large battery capacity allows us to combine all the
charging phases together into one charging phase and does
not affect the completion time. We thus focus on finding
the optimal one (energy receiving, data transmitting) cycle
solution.

If all packets arrive immediately after time 0, we can treat
them as a single packet with size B =

∑
1≤i≤nBi and the

wOPT rate rs is still the optimal rate in the sending phase
as discussed in the last subsection. However, if some packets
arrive very late, then at some time point t, the transmitter is
forced to stop because all arrived data have been transmitted
and some packets in P have not arrived yet. We could charge
more energy while we are waiting for these packets to arrive.
This extra energy allows us to use a higher rate than rs to
shorten the completion time.

Before we present the optimal algorithm that produces
the minimum completion time T , we would like to state
some properties of the optimal solution, i.e. the optimal rate
schedule, should have. Since we focus on the one cycle
solution, the following lemmas are about the transmission rate
in the only sending phase.

Lemma 1. The optimal rate schedule ropt(t) is a non-
decreasing function until the completion time T .

Lemma 2. The optimal rate schedule ropt(t) increases only
at a packet arrival time ai, 1 ≤ i ≤ n.

Lemma 3. The optimal rate schedule ropt(t) increases only
when all arrived data has been transmitted.

Lemmas similar to Lemmas 1, 2 and 3 have been known in
the literature for energy efficient wireless transmissions [10],
[11] and energy harvesting wireless transmissions [15], [16],
[19]. We omit the proofs because they can be proved by similar
arguments. Interested readers are suggested to refer to [19] for
more details.

We now introduce the cumulative data-time diagram [13].
Let A(t) =

∑
i:ai≤tBi denote the total amount of bits that

have arrived in time interval [0, t]. The curve of function A(t)
on the cumulative data-time diagram is called the arrival
curve. Obviously, the arrival curve is with an up-stair-like
shape, as depicted in Fig. 3. Similarly, we define the departure
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Fig. 3. In the cumulative data-time diagram, a feasible departure curve must
be on the right side of the arrival curve. The slopes of the departure curve
is the transmission rates. The optimal departure curve for the corresponding
DMS-1 problem can be represented by the line segment L′K′. If L′K′ is on
the right side of the arrival curve, we are done. Otherwise, we move L′K′

right to a new position LK such that the arrival curve is on its left side and
there is a tangency point. From this tangency, we iteratively find the optimal
line segment.

curve B(t), which is the actual amount of data leaving the sys-
tem (transmitted) during [0, t]. It is easy to see that a feasible
departure curve B(t) must be on the right side of the arrival
curve A(t) because of the causality constraint. Furthermore,
the slope of B(t) is actually the rate schedule r(t). Let Bopt(t)
be the optimal departure curve, then, the determination of
Bopt(t) immediately leads to the determination of ropt(t). We
therefore focus on Bopt(t).

The high level idea to solve the large battery DMS problem
is as follows. In the cumulative data-time diagram, i.e. Fig. 3,
we draw a line segment with slope rs connecting point (τ1, 0)
and point (τ1 + τ2, B), where B =

∑
1≤i≤nBi, while τ1 and

τ2 are calculated by Eq. (22). As in Fig. 3, such line segment
is L′K ′, which represents the optimal rate schedule to transmit
an amount of B data as discussed in the last section. If line
segment L′K ′ is on the right of the arrival curve A(t), then
such rate schedule is feasible and minimizes the completion
time, thus we are done. Otherwise, we move this line segment
towards its right, stop moving as soon as it is on the right
of the arrival curve, i.e., LK in Fig. 3. Obviously, there is a
tangency point on LK. The rightward movement suggests that
the transmission starts at a later time t1, t1 > τ1, such that we
get more energy charged into the battery and therefore can use
a higher-slope line segment to minimize the completion time.
We take this tangency point as the start point, take the remain
energy in battery as E0 and take the total amount of unsent
packets as B, then we compute rnowpt by Eq. (11) to minimize
the completion time. If the line starting from this tangency
point with slope rnowpt is on the right of the arrival curve,
we are done. Otherwise, we connect this tangency point and
every corner of the arrival curve to find the lowest-slope line
segment. We now take the ending point of this line segment
as a start point and repeat this process until all packets are
finished.



We present formal steps of this method in Algo-
rithm DMSP-LARGEBATTERY. Line 3-6 test whether line
segment L′K ′ is on the right of A(t). Line 7-9 directly
compute the position of line segment LK. The while loop
repeatedly computes rnowpt and the lowest-slope line segment.

Algorithm 1 DMSP-LARGEBATTERY

1: Set B0 = 0 for loop purpose
2: Let τ1 and τ2 be calculated by Eq. (22).

3: t1 = maxi(ai −
∑i−1

j=0 Bj

rs
)

4: if t1 < τ1 then
5: return line segment (τ1, 0)− (τ1 + τ2, B)
6: end if
7: k = argmaxi(ai −

∑i−1
j=0 Bj

rs
)

8: t2 = ak
9: Set line segment (t1, 0)− (t2,

∑k−1
j=0 Bj))

10: while k < n do
11: rmin = mink<i≤n

∑i−1
j=k Bj

ai−ak
12: Take the remain energy in battery as E0 and take∑

k≤i≤nBi as B, compute rnowpt by Eq. (11).
13: if rnowpt < rmin then
14: Set segment (ak,

∑k−1
j=0 Bi)− (ak +

∑
k≤i≤n Bi

rnowpt
, B)

15: return all line segments
16: else
17: knew = argmink<i≤n

∑i−1
j=k Bj

ai−ak
18: Set segment (ak,

∑k−1
j=0 Bi)− (aknew

,
∑knew−1
j=0 Bi)

19: k = knew
20: end if
21: end while
22: Take the remain energy as E0 and take Bn as B, compute

rnowpt by Eq. (11).
23: Set line segment (an, B −Bn)− (an + Bn

rnowpt
, B)

24: return all line segments

Theorem 2. Algorithm DMSP-LARGEBATTERY produces the
optimal departure curve Bopt(t) for the offline DMS problem
with a sufficiently large battery.

Proof. The produced curve is consist of line segments set in
Line 5, 9, 14, 18 and 23. We now show that they are all opti-
mal. It is obvious that if Algorithm DMSP-LARGEBATTERY
returns in the if statement of Line 4, the produced departure
curve is optimal according to Theorem 1.

We now show that the line segment set in Line 9 is optimal
by showing (1) its slope is optimal and (2) its ending point
is optimal. (1) The slope in Line 9 is obvious rs. We now
prove it is the optimal rate. Suppose the optimal second rate
changing point is topt2 . According to Lemma 2, topt2 must an
arrival point, let it be ak; according to Lemma 3, packets
P1, P2, . . . , Pk−1 must have been completely delivered before
ak. Therefore, the optimal solution uses the minimum energy
to deliver packets P1, P2, . . . , Pk−1 before ak, because only
in such a way the maximum energy can be used to transmit
the rest packets after ak to minimize the completion time.
According to the discuss about the dual problem right after

Theorem 1, the wOPT rate rs is the optimal rate. (2) We
now prove topt2 = t2 by contradiction. Suppose topt2 < t2,
since topt2 is an arrival point, let ao = topt2 . According to

Line 7, we have ao −
∑o−1

j=0 Bj

rs
< ak −

∑k−1
j=0 Bj

rs
. Therefore,∑k−1

j=o Bj

ak−ao < rs. This means the optimal rate decreases at
topt2 , which contradicts Lemma 1. Suppose topt2 > t2, then
according to Line 7, point (t2,

∑k−1
j=0 Bj) will be on the right

of line segment (ao−
∑o−1

j=0 Bj

rs
, 0)−(topt2 ,

∑o−1
j=0 Bj), violating

the causality constraint. Hence, topt2 = t2.
We now show the line segments set in the while loop, i.e.,

in Line 14 and 18, is optimal. We prove this by induction.
In the first loop, all line segments before ak = t2 is optimal,
which serves as the base. We assume, for any loop, all line
segment before ak is optimal, and we need to show the
segment drawn in current loop of Line 14 or 18 is also optimal.
It is easy to see that if rnowpt < rmin, where rnowpt is
calculated by Eq. (11), it is optimal to minimize the completion
time. Therefore line segment drawing in Line 14 is optimal.
We next show the line segment drawing in Line 18 is also
optimal. For the sake of contradiction, suppose aknew is not
the optimal ending, instead, ao 6= aknew is optimal. According

to Line 17, we have
∑knew−1

j=k Bj

aknew−ak
<

∑o−1
j=k Bj

ao−ak . If o < knew,

then
∑knew−1

j=o Bj

aknew−ao
<

∑o−1
j=k Bj

ao−ak , which means the rate in a
subsequence time duration [ao, aknew

] is lower than that in
duration [ak, ao], contradicting Lemma 1. Otherwise, we have
o > knew, then point (aknew ,

∑knew−1
j=0 Bi) is on the right of

line (ak,
∑k−1
j=0 Bi) − (ao,

∑o−1
j=0 Bi), violating the causality

constraint.
Segment set in Line 23 is optimal because it is computed

by Eq. (11).
Therefore, all line segments set in this algorithm is optimal.

B. An optimal solution for the general problem

This subsection studies the original DMS problem of Defi-
nition 2, in which the battery has a capacity of Eb. Unlike the
solution in the previous subsection, multiple (energy receiving,
data transmitting) cycles are needed in this general case.

We will show how to divide the time into cycles and how
to determine the transmission rate for each cycle, but first we
introduce some properties about the optimal rate schedule.

Lemma 4. In an optimal rate schedule ropt(t), the rate in
every cycle is rs except the one in the last cycle.

In the last cycle, Lemmas 1, 2 and 3 still hold.

Proof. We prove by contradiction. Suppose [t1, t2] is the
sending phase of the first cycle in which the optimal rate
schedule ropt 6= rs and is not the last cycle. Then, there must
be another sending phase following. And in between the two
phases, it is an energy receiving interval [t2, t3].

It is clear that the amount of data transmitted by the given
optimal schedule in [t1, t2] is B = ropt(t2 − t1). Suppose the
transmitter has remain energy E3 in battery at t3. Now, if we



consider the single cycle scheduling problem to transmit B
data in [t1, t3] and maximizes the remain energy at t3, then
by the discussion of the dual problem in the last subsection,
the maximum remain energy will be obtained by using rate rs
in the transmission. Obviously, this will lead to a better result
than the given optimal schedule, which is a contradiction.

Although we have known the transmission rate in each
cycle except the last one is rs, we still need to determine
the beginning and ending of cycles and the rate schedule in
the last cycle.

In the following discuss, we assume the battery is initial
empty, i.e., E0 = 0. Any non-zero initial energy E0 6= 0 can be
equivalently considered as if an empty battery being charged
for a length of E0

p time. We therefore move the starting time
earlier, and during the first E0

p time, no packet arrives such
that charging battery is the only option, and by original starting
time, there is E0 energy in the battery.

According to Lemma 4, in any (energy receiving, data
transmitting) cycle other than the last one, although the
transmission rate is rs in the sending phase, the effective
transmission rate is less than rs because it needs a charging
phase to charge. It equals the amount of data B transmitted
over τ1 + τ2 = B(2rs−1+p)

rsp
. The effective transmission rate is

thus ra = B
τ1+τ2

= rsp
2rs−1+p .

Lemma 5. On the cumulative data-time diagram, any optimal
departure curve Bopt(t) can be re-arranged to be bounded by
a parallelogram with bottom length Eb

p , side line slope ra and
height B.

One such parallelogram is illustrated in Fig. 4 as CDEF .
The bottom edge EF is with length Eb

p , and the side edges
DE and CF are both with slope ra, and the height is B.

Proof. In an optimal solution, it is possible some energy is
wasted because of the battery capacity constraint. In case the
battery is already full, any further energy harvested will be
lost. The charging period when the battery is full is called the
lost period, which does not contribute to the energy in battery.
In an optimal solution, the lost period may be in any charging
phase. We combine all the lost periods into a single one and
put it at the beginning of time. Obviously, the completion time
is not affected and the modified solution is still optimal.

Suppose t ≥ 0 is the ending of the combined single lost
period in the modified solution, then after t, no energy is
wasted. Note that, at time t, the battery is empty since lost
periods do not contribute to energy in battery.

For the example in Fig. 4, suppose t = x(E) is the end
of the lost period. Once a departure curve reaches a point
on DE, the battery becomes empty and the transmitter must
stop sending and the departure curve horizontally goes to the
right. Whenever the departure curve reaches a point on CF ,
the battery is full, then it must switch to sending data since no
energy wasted after E, therefore the curve goes up right. As a
conclusion, any departure curve must be inside CDEF .

rs 
ra 

S(L’) 

Arrival curve E F 

C D(K’) C’ D’ 
∑i Bi

B 

E’ 
-E0/p (Eb-E0)/p 

rs 

O 

G’ 

t1 

F’ 

lost period 

t 

Fig. 4. From point O, system starts with an empty battery. There is a
parallelogram C′D′E′F ′ with point E′ at O. E′F ′ is with length Eb

p
, which

is the time length used to charge the battery from empty to full. Both D′E′

and C′F ′ are with slope ra, which is the maximum effective transmission
rate. We move C′D′E′F ′ to a new position CDEF such that the arrival
curve is the left side of CF . We then draw line from point D with the slope
rs, and make it DS. Now DS can be treated as L′K′ in Fig. 3 and apply
the same technique to compute the optimal rate schedule.

Although we have known the optimal departure curve must
be inside the parallelogram CDEF , the exact time t is
unknown yet. We hence first determine the optimal position
of the parallelogram CDEF , then determine the optimal
departure curve inside this parallelogram.

The high level idea is as follows. If the parallelogram is
at its leftmost position, i.e., C ′D′E′F ′, C ′F ′ is already on
the right side of the arrival curve, then, t = 0 is the optimal
position of the CDEF . Otherwise, we move the parallelogram
to its right, stop moving as soon as CF is on the right of the
arrival curve. We then draw line from point D with the slope
rs, which intersects with CF at point S. Before S, it is rs
in every sending phase according to Lemma 4. We can easily
arrange a departure curve on the right side of the arrival curve
that uses only rate rs and make it go through point S. If DS is
also on the right side of the arrival curve, then we set it as the
last line segment of the departure curve. Otherwise, starting
from S, we compute the departure curve by the technique
developed in the last subsection.

We now give a formal pseudo code in Algorithm DMSP.

Theorem 3. Algorithm DMSP produces the optimal departure
curve for the general offline DMS problem.

Proof. The produced curve is consist of line segments set in
Line 4, 7, 11, 13 and 14. We show that they are all optimal.

We first prove the line segment set in Line 4 is optimal.
It equals to prove that the optimal position of parallelogram
is point F at (t1, 0), so point E is at (t1 − Eb

p , 0). By
contradiction, assume the optimal position of point F is at
(topt1 , 0) instead. If topt1 < t1, then point (ak,

∑k−1
j=0 Bj) is on

the right of line segment FC, where k is computed in Line 3.
Therefore, the optimal departure curve must go to the right of
FC to reach such point. When the departure curve reaches a
point on FC, the battery is already full, thus to reach a point



Algorithm 2 DMSP
1: Let ra = rsp

2rs−1+p

2: t1 = max{ Bra ,maxi{ai −
∑i−1

j=0 Bj

ra
}}

3: k = argmaxi{ai −
∑i−1

j=0 Bj

ra
}

4: Set line segment O − (t1, 0) // battery is full at time t1
5: Let Bt = 0, Blim = B − Ebrs

2rs−1
6: while Bt ≤ Blim do
7: Set line segments to transmit at rs whenever both

energy and data are available
8: Charge until the battery is full
9: end while // these line segments go through point S

10: if DS is on the right of A(t) then
11: Set DS as the last line segment of the departure curve
12: else
13: Taking S as start point, Eb as initial energy and

assuming the battery is sufficiently large, we invoke
DMSP-LARGEBATTERY to compute line segments

14: Break line segments that are on the right of CF and
move these pieces to on its left

15: end if
16: return all line segments

beyond FC, some energy must be wasted, and there is lost
period after t1. We can move such period t othe time before
E thus move the parallelogram right, without affecting the
completion time. Therefore (topt1 , 0) is not the optimal position
of point F . If topt1 > t1, more energy is wasted before topt1

than t1. Therefore, moving the parallelogram left will decrease
the wasted energy, thus will not enlarge the completion time.

At the beginning of the last sending phase, the maximum
amount of energy is Eb, the battery capacity. The maximum
data can be transmitted is Ebrs

2rs−1 , using the wOPT rate rs.
Therefore, before the last cycle, at most Blim = B − Ebrs

2rs−1
data is delivered at rate rs. So the schedule determined in
while of Line 6 is optimal.

We now show the line segments introduced in Line 11,
13 and 14 is optimal. It is easy to see that if DS is on the
right of A(t), it is optimal to minimize the completion time
according to the optimality property of the wOPT rate, hence
the line segment set in Line 11 is optimal. Since DMSP-
LARGEBATTERY has been proved to produce the optimal line
segments that minimize the completion time, line segments set
in Line 13 and 14 are optimal.

V. ONLINE HEURISTIC AND SIMULATION RESULTS

Offline algorithms proposed in the last section require all the
information about packets. However, in real world scenario,
it is not easy to obtain such information. Hence, in this
section, we design an online heuristic algorithm and conduct
simulations to evaluate its efficiency.

A. Online Heuristic

According to Lemma 4, the optimal rate schedule in all
cycles, except the last one, is rs. However, the optimal switch
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Fig. 5. The completion times when the energy transfer speed p changes from
1 to 15 with step 2.

point is unknown. We design Algorithm ONLINE-HEURISTIC
to heuristically determine the switch points and set the rate in
the last cycle to be rs as well.

Algorithm 3 ONLINE-HEURISTIC

1: Compute rs = w+1
ln 2

2: while more packets arrive do
3: Transmit at rs until no energy or no data left
4: if no energy left then
5: Charge until the battery is full
6: else if no data left then
7: Charge until the next packet arrives
8: end if
9: end while

The idea in Algorithm ONLINE-HEURISTIC is simple:
transmit at rate rs as soon as energy and data are ready. We
next show how this simple idea works.

B. Simulation Results

In this subsection, we implement the proposed Algo-
rithm ONLINE-HEURISTIC and study its efficiency. Since
there is no other algorithms focusing on the same DMS
problem for a wireless powered device, we compare the online
algorithm with the optimal offline Algorithm DMSP.

In simulations, 50 packets are generated following the
Poisson arrival, where the arrival rate is set to be 1/10. Packet
size is assumed to be a random variable following the uniform
distribution U(7, 10). The battery capacity Eb is between 800
and 1500, while the initial energy E0 is assumed to be a value
between empty E0 = 0 and full E0 = Eb randomly. The
energy transfer speed p is set between 1 and 15.

For every settings, we randomly generate 100 instances,
and use the mean value of the results for comparison. The
comparison results are illustrated in Fig. 5 and 6.

We can see from Fig. 5 that the larger the energy transfer
speed p is, the shorter the completion time is. This is because
when p is large, little time is taken to charge the battery,
therefore the total time decreases. While p is small, it needs
more careful effect to schedule the transmission. Thus the
simple online heuristic fails to produce a solution close to
the optimal. We can see the gap between the two curves is
bigger when p is small.

From Fig. 6, we can conclude that the battery capacity does
not have much impact on the algorithm performance. This is
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Fig. 6. The completion times when the battery capacity Eb changes from
800 to 1500 with step 100.

because both online heuristic and online optimal algorithms
work in cycles. In a long run, the battery capacity plays
unimportant role on the completion time.

From both figures, we can see that the online heuristic
has a similar performance to the offline optimal solution.
This is because the online heuristic is designed based on
the optimality property Lemma 4 that states the optimal
transmission rate is rs, excepting in the last cycle.

VI. RELATED WORK

E. Uysal-Biyikoglu et al. [10], [11] are among the first
group to study the energy minimization problem for delivering
a set of packets before a common deadline. They propose a
lazy schedule to optimally solve the offline problem. Zafer and
Modiano [12], [13] further generalize the problem to allow
individual packet deadlines provided they follow the same
order packets arrive. Most recently, Shan, Luo and Shen [14]
solve the energy minimization problem that allows arbitrary
individual packet deadlines. All these research works [10]–
[14] do not consider energy harvesting.

J. Yang et al. [15], [16] consider the delay minimiza-
tion problem for harvesting enabled channels assuming all
harvesting events are pre-determined and take no time to
receive the energy. They have obtained the optimal offline
scheduling algorithm. A. Yener et al. extend their work to
let the battery have a limited capacity [17], [18]. F. Shan et
al. study the energy consumption minimization problem for
an energy harvesting transmitter, they allow packets to have
individual deadlines.

VII. CONCLUSIONS

In this paper, we have studied the delay minimization
scheduling problem for a WPT device. We have obtained
an optimal schedule such that a sequence of data packets
can be transmitted with the minimum delay assuming the
point-to-point AWGN channel. It was discovered that, for all
(energy receiving, data transmitting) cycles, except the last
cycle, the optimal transmission rate should be a constant which
is called the wOPT rate. Based on this discovery, the offline
delay minimization problem has been solved. Then, an online
heuristic scheduling algorithm was proposed.
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