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Given a rate adaptive wireless transmitter, a challenging problem is to design a rate control
policy for it such that the energy consumption is minimized at transmitting a set of dynam-
ically arrived pack2;ets with arbitrary individual deadlines. In a decade, researches have
partially made progress on this topic. A latest work offers an optimal algorithm that allows
packets to have arbitrary deadlines but requires them to follow the order they arrive. This
paper first presents the Densest Interval First (DIF) policy which repeatedly locates the
densest data interval and determines its transmission rate. This policy is proved to be opti-
mal for the most general model that allows arbitrary arrival times as well as arbitrary
deadlines. Then, this paper presents a simple EDF (earliest deadline first) algorithm to
actually schedule the transmission time for each packet. It is proved that the EDF always
guarantees every packet to complete transmission before its deadline with minimum
energy consumption which is computed and required by DIF. Finally, this paper also
proposes a novel online policy named Density Guided Cooling (DGC) policy which models
Newton’s Law of Cooling. Simulations show that online DGC policy constantly produces a
rate scheduling that on average consumes energy within 110% of the minimum value
obtained by the offline DIF.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Most wireless networks, e.g., sensor networks, ad hoc
networks and cell networks, rely upon limited energy sup-
ply such as batteries to support their operations. Therefore,
how to efficiently use the limited energy is a crucial issue
in all aspects of the network design and operations, which
often determines the length of wireless devices’ working
period or the network lifetime. Tremendous research
efforts have been made in designing energy efficient
routing, energy efficient data gathering, etc.
Because very often packets from various real-time
applications that have different arrival times and different
delay constraints need be transmitted through a common
channel, a challenging research task is to develop a trans-
mission rate control policy and a scheduling algorithm
such that a minimum energy is used in transmitting all
arrived packets before their deadlines.

1.1. Related work

Prabhakar, Uysal-Biyikoglu, and El Gamal are among
the first group of researchers who formulated the energy
efficient packet transmission problem more than a decade
ago ([1] and its extension [2]), which has drawn consider-
able interests from researchers in the field of wireless
communications. In [1,2], they considered an offline case
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where the arrival time and size of every packet are known
prior to the scheduling and all packets have a common
deadline. They presented an optimal scheduling algorithm
that guarantees to deliver all packets before the deadline
with minimum energy consumption. In their proof, several
important optimality properties were introduced which
are useful and inspiring for following researches. Uysal-
Biyikoglu and El Gamal [3] also generalized the problem
by taking multiple-access channels and channel fading into
consideration. They proposed the FlowRight algorithm to
find an optimal offline schedule for the generalized prob-
lem but still assumed that all packets have a common
deadline. As pointed out by Chen et al. [4,5], the single
deadline model does not explicitly consider individual
packet delay performance.

In [6], Khojastepour and Sabharwal started to look at
the energy efficient packet transmission problem where
each packet could have its own deadline. They proposed
the water-filling method to find an optimal rate control pol-
icy. However, this method is applicable only for the case
where all packets have arrived and have been waiting in
buffer before scheduling. Obviously, this is an easy case
but a good initial work for dealing with individual packet
deadlines.

The energy efficient packet transmission problem with
individual packet deadlines has also been studied by other
researchers. Chen et al. ([4] and journal version [5]) pro-
posed an offline optimal scheduling algorithm that handles
individual deadlines. However, a restriction was imposed
that all packets must have equal delay constraints which
means that the length of time interval from the arrival time
to its deadline is the same for every packet. Later, they
extended the algorithm to an online algorithm [7] and then
to a fading channel ([8] and journal version [9]). Although
the authors claimed the result can be extended to scenarios
with unequal delay constraints, it seems not an easy job.

Zafer and Modiano ([10] and journal version [11]) pre-
sented an optimal algorithm that allows each packet to
have an arbitrary size, an arbitrary arrival time and an arbi-
trary deadline. They claimed that earlier results on the
energy efficient packet transmission problem can be recov-
ered as special cases. They used cumulative curves to trace
packet arrivals and packet departures. The key observation
is that a feasible departure curve always lies between the
arrival curve and minimum departure curve. Displayed in
the cumulative data-time diagram, their idea is intuitive
and easy to understand. Later, they extended their results
by considering fading effects [12]. Their work has made a
true progress on the energy efficient packet transmission
problem. However, they still need to make an undesirable
assumption that a packet arriving earlier carries an earlier
deadline. In other words, the cumulative curves fail to han-
dle the case where a packet arrived later may have a more
urgent deadline.

In addition to above research results that are directly
related to our paper, some important extended work is also
observed. For example, recently, Yang and Ulukus [13]
investigated the energy efficient packet transmission prob-
lem in an energy harvesting system where the energy used
by the transmitter can get recharged, time by time, to
support long life operation. However, it is still necessary
to consider how to control the transmission rate to mini-
mize energy consumption because the recharged energy
is limited each time and the amount of data to be transmit-
ted may be large. They assume that the time and amount of
energy received from each harvesting are known in
advance and the size and arrival time of each packet are
also known in advance. There is no deadline considered,
but they presented an optimal algorithm that guarantees
to finish transmission of all data in a shortest time span.
Later the result for a single channel was extended to the
case of multi-access channels [14], to the case of broad-
casting channels [15,16], and to the case with fading chan-
nels [17,18]. Interested readers may find more related
work such as [19–21]. We omit details here.

Most papers we introduced above also provided online
algorithms [1–3,7–9,11,18] as an extension of their offline
algorithms. Basically, they follow more or less a similar
approach, that is, based on current known information,
use the offline algorithm to set transmission rates until a
new packet arrives. When a new packet arrives, the online
algorithm re-calculates the best rates using the offline
algorithm.

1.2. Contributions

We can conclude from the above related works that an
unsolved challenging open problem in the past 10 years is
how to design an optimal energy efficient rate control pol-
icy for a single channel for transmitting a sequence of
packets each of which has an arbitrary individual arrival
time, arbitrary size and arbitrary individual deadline. The
technique of cumulative curves seems not applicable to
this more general model. We need a new method. Our con-
tributions can be summarized as follows.

1. We have solved the above open problem. An optimal
rate control policy named Densest Interval First (DIF) is
presented, which is inspired by the YDS algorithm pro-
posed by Yao et al. [22].

2. The DIF approach opens a new avenue to obtaining
optimal results for other similar rate adaption problems
in fading channels, energy harvesting systems, multi-
channel systems, etc. in the future.

3. We prove that, once the transmission rate for each time
interval is determined by DIF, the Earliest Deadline First
(EDF) scheduling algorithm produces an actual sche-
dule for each individual packet to complete its trans-
mission before its deadline with the minimum energy
allowed by DIF.

4. We also present an online policy called Density Guided
Cooling (DGC) policy that models Newton’s Law of
Cooling. Simulations show that this policy constantly
produces a rate scheduling that on average consumes
energy within 110% of the minimum.

The YDS algorithm [22] is designed to solve task-sched-
uling problems for processors, in which tasks may have
arbitrary arrival time and arbitrary deadline. The YDS algo-
rithm inspired us to design the DIF policy, which solves
the 10-year open question in wireless communication.
Although the two methods share some similar idea, the
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optimality proofs are different. In this paper, we present a
direct and independent optimality proof for the scenario of
wireless date transmission. Moreover, after the transmis-
sion rate is determined by DIF, we discovered that applying
EDF (earliest deadline first) rule for all packets can actually
guarantee every deadline within the energy limit imposed
by DIF.

The rest of the paper is organized as follows. In Section 2,
the system model and the problem formulation are pre-
sented. In Section 3, we introduce the notion of data
interval and the DIF policy. The correctness and optimality
of DIF policy are also presented. Section 4 discusses the EDF
scheduling and proves that EDF guarantees every packet to
meet its deadline. Section 5 introduces the online DGC
policy and presents simulation results. Section 6 concludes
this paper.
2. System model and problem formulation

We consider a single point to point transmission chan-
nel over which the transmitter needs to send a set of n
packets to the receiver. We first model the data set and
its delay constraints.
10K 
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Fig. 1. An example of a data set with n = 4.
2.1. Data set and delay constraints

We assume P = {P1, P2, . . . , Pn} is a set of n packets to be
transmitted. Each packet Pi has an arbitrary arrival time
ai P 0, an arbitrary deadline di (>ai), and an arbitrary packet
size Bi > 0, denoted by a triple Pi = (Bi,ai,di), 1 6 i 6 n. The
time interval [ai,di) is called the waiting interval of Pi. Note
that we will use a left-closed, right-open interval to
represent a time interval throughout this paper. It is allowed
that multiple packets arrive at the same time or multiple
packets have a common deadline. A packet size is measured
by a number of bytes that could be transmitted at any rate.
The transmission of packet Pi, 1 6 i 6 n, can begin only after
its arrival time ai and must finish by its deadline di. This is
called causality constraints [13]. A packet may be transmit-
ted in several segments, but must finish before its deadline.
For the offline problem, we assume all information for Pi,
including Bi, ai, di, 1 6 i 6 n, are known before we determine
the transmission rate and scheduling. For convenience,
we assume packet arrival times are sorted such that
0 6 a1 6 a2 6 � � � 6 an. Before scheduling, we also sort their
deadlines such that dh1 6 dh2 6 � � � 6 dhn where h1, h2, . . . , hn

is a permutation of 1, 2, . . . , n. Let T ¼ dhn denote the largest
deadline in the sequence.

Given sequences 0 6 a1 6 a2 6 � � � 6 an, 0 6 dh1 6 dh2 6

� � � 6 dhn ¼ T , and associated Bi, 1 6 i 6 n, the data set to
be transmitted is completely defined. If a packet arrives
at time t, then we say that an arrival event occurs at
t and the t is called an arrival (event) point. Similarly, if a
deadline occurs at time t, then we say that a deadline event
occurs at t, and the t is called a deadline (event) point.
Therefore, from t = 0 to T, there are 2n events in total. An
arrival point may also be a deadline point. The number m
of distinct event points may be less than 2n, m 6 2n, if mul-
tiple events occur at the same time. We assume that the m
distinct event points ek, 1 6 k 6m, are sorted in the order
they occur, 0 6 e1 < e2 < � � � < em. Obviously, e1 = a1,
em ¼ dhn ¼ T . The time interval between two adjacent
event points is called an epoch, and epoch Ek = [ek,ek+1),
1 6 k 6m � 1, is said to have rank k in the epoch sequence.
Fig. 1 shows an example of a data set for n = 4
where P1 = (10K,2,6), P2 = (8K,3,12), P3 = (20K,5,9), P4 =
(7K,7,11), T = 12, m = 8. The 7 epochs are E1 = [2,3),
E2 = [3,5), E3 = [5,6), E4 = [6,7), E5 = [7,9), E6 = [9,11),
E7 = [11,12).

We use function n to map each arrival or deadline point
to its rank in the event sequence. Thus, if ai = ek then
n(ai) = k. Similarly, if dhi

¼ ek then n(dhi
) = k. Function n is

easy to obtain and known before scheduling.
Obviously, this model for delay constraints is the

most general model with no restrictions on the order of
events and the size of packets. All previous packet models
in literature can be recovered as special cases of this
model.

2.2. The system model

Following the same model used by previous researches
[1–5,7,8,10,11,13,14], we consider a single point to point
transmission channel and make the same assumption that
the transmitter can adaptively change its transmission rate
r, which is related to transmission power p through a func-
tion r = g(p). The function g(p) is called the power-rate func-
tion and satisfies the convex property.

Definition 1 [13]. A power-rate function g(p) is said to
satisfy the convex property if it satisfies the following 3
conditions:
(i) g(0) = 0 and g(p) ?1 as p ?1;
(ii) g(p) increases monotonically and strictly concave in

p;
(iii) g(p) is continuously differentiable.

The convex property is satisfied in many systems with
realistic encoding/decoding schemes, such as the optimal
random coding in single-user additive White Gaussian
Noise (AWGN) channel, where gðpÞ ¼ 1

2 logð1þ p=NÞ, N is
the thermal noise level and often assumed N = 1 [8,13].

Definition 2. The packet transmission rate function ri(t) of
packet Pi,: R+ ? R+ is defined as the transmission rate for
packet Pi at time t, 0 6 t < T, 1 6 i 6 n.

By causality constraints, the packet transmission rate
function must satisfy the following equation for 1 6 i 6 n.
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Z T

0
riðtÞdt ¼

Z di

ai

riðtÞdt ¼ Bi ð1Þ

Definition 3. Given a set of n packet transmission rate
functions, ri(t), 0 6 t < T, 1 6 i 6 n, the overall rate function
r(t) is defined as the sum of all packet transmission rate
functions, that is rðtÞ ¼

Pn
i¼1riðtÞ, 0 6 t < T.

According to the transmission model, we have
r(t) = g(p(t)), 0 6 t < T. Obviously, an overall rate function
r(t), 0 6 t < T, uniquely defines a transmission rate policy
for the time interval [0,T). Given an overall rate function
r(t), the corresponding total energy consumption can be
calculated by the following integration [11].

E ¼
Z T

0
g�1ðrðtÞÞdt ð2Þ
2.3. Problem formulation

Given a data set as described above, we need to find an
optimal feasible rate policy to satisfy the causality con-
straints. Let us define a feasible solution first.

Definition 4. Given a data set of n packets, Pi = (Bi,ai,di),
1 6 i 6 n, and a system model described above, a set S of n
packet transmission rate functions, S = {ri(t),
0 6 t < T|1 6 i 6 n} is called a feasible solution if Eq. (1) is
satisfied for each ri(t), 1 6 i 6 n.
Definition 5. Given a data set of n packets, Pi = (Bi,ai,di),
1 6 i 6 n, and a system model described above, a feasible
solution S is called optimal if its overall rate function r(t),
0 6 t < T, minimizes the energy consumption defined by
(2). Such an overall rate function r(t), 0 6 t < T, is called
an optimal overall rate function, denoted by ropt(t), 0 6 t < T.

Now, the problem we will study can be defined as
follows.
Definition 6. The offline energy efficient packet transmission
problem is to find an optimal feasible solution S = {ri(t),
0 6 t < T|1 6 i 6 n} for a given data set of n packets, Pi =
(Bi,ai,di), 1 6 i 6 n.
3. The Densest Interval First (DIF) policy

Before we introduce Densest Interval First (DIF) policy,
we need to discuss some basic properties that an optimal
transmission rate policy, ropt(t), 0 6 t < T, must have. Some
of them have been known from previous research, some
are new.

3.1. Basic properties of an optimal rate policy

It is easy to see [13] that, in any epoch [ek,ek+1)
1 6 k 6m � 1, only one transmission rate should be used
because of the convexity of the power-rate function. If
two rates r1 < r2 were used, we can always find a single rate
r, r1 < r < r2, to transmit the same amount of data with
less energy. This method is called equalization. Therefore,
finding an optimal rate policy is to find a constant rate
for each epoch such that the total energy used is mini-
mized and all deadlines are guaranteed. The equalization
is the most important notion for designing optimal rate
control policy. The reader is suggested to refer [13] to get
familiar with this notion.

Because of the causality constraints, from t = 0 to any
time t > 0 the total amount of delivered data could not
exceed the total amount of arrived data, and should not
be less than the amount of data whose deadlines have
expired. Thus, the following inequality must hold:

8t 2 ½0; TÞ;
X
di6t

Bi 6

Z t

0
roptðxÞdx 6

X
ai<t

Bi ð3Þ

Now, the following two lemmas introduce some more
properties that an optimal rate policy must have.

Lemma 1. Any optimal overall rate function ropt(t), 0 6 t < T,
increases rate only at an arrival point and decreases rate only
at a deadline point.
Proof. We have already explained that an optimal rate
policy ropt(t), 0 6 t < T, can change rate only at event points.
Now, for the sake of contradiction, we assume the optimal
rate policy increases rate at an event point ej, but no packet
arrives at ej. Obviously, j > 1, since e1 = a1 is an arrival point.
Suppose the policy uses rate r1 in the epoch [ej�1,ej) and
uses rate r2 for the epoch [ej,ej+1), and r2 > r1. Then, we
can equalize them to use a rate r, r1 < r < r2, to transmit
the same amount of data in interval [ej�1,ej+1) with less
energy. That is, some amount of data previously transmit-
ted in epoch [ej,ej+1) is moved to be transmitted in the ear-
lier epoch [ej�1,ej). By doing so, no deadline will be missed,
because we transmit more data in an earlier epoch; no data
will be transmitted before its arrival either because they all
arrived before or at ej�1. This change does not cause any
violation of causality constraint, but reduces the energy
consumption. This contradicts the optimality of ropt(t).

Similarly, for the sake of contradiction, if the policy uses
rate r1 in epoch [ei�1,ei) but decreases the rate to r2 (<r1) for
epoch [ei,ei+1), while no deadline event is at ei, then we can
equalize them to use a rate r, r1 > r > r2, to transmit the
same amount of data in interval [ei�1,ei+1) with less energy.
That is, some amount of data previously transmitted in
epoch [ei�1,ei) is moved to be transmitted in later epoch
[ei,ei+1). By doing so, no data will be transmitted before its
arrival, no deadline will be missed either because they all
have a deadline after or at ej+1. Thus this change does not
cause any violation of causality constraint, but reduces the
energy consumption. This is also a contradiction. h

Here we would like to acknowledge that previous work
[11] presented similar lemmas to Lemma 1 without proof
for a previous packet model. Since it is not so obvious in
our more general case, a formal proof here would be helpful.

Lemma 2. Let Pk = (Bk,ak,dk) be any packet transmitted
according to an optimal rate policy ropt(t). Let H be the set
of all epochs contained in time interval [ak,dk), and H0 # H be
the subset of H in which rk(t) – 0. The following two
statements are true:
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(1) The overall rate ropt(t) used for any epoch of H0 must be
the same rate r.

(2) The overall rate ropt(t) used for any epoch of H � H0

must be higher or equal to the rate r.
Table 1
Parameters for data intervals of packet set of Fig. 1.

S[i, j] dh1
¼ d1 dh2

¼ d3 dh3
¼ d4 dh4

¼ d2

6 9 11 12

a1 = 2 P1(10k,2,6) P1(10k,2,6) P1(10k,2,6) P1(10k,2,6)
P3(20k,5,9) P3(20k,5,9) P3(20k,5,9)

P4(7k,7,11) P4(7k,7,11)
P2(8k,3,12)

a2 = 3 £ P3(20k,5,9) P3(20k,5,9) P3(20k,5,9)
P4(7k,7,11) P4(7k,7,11)

P2(8k,3,12)

a3 = 5 £ P3(20k,5,9) P3(20k,5,9) P3(20k,5,9)
P4(7k,7,11) P4(7k,7,11)

a4 = 7 Undefined £ P4(7k,7,11) P4(7k,7,11)

B[i, j] dh1
¼ d1 dh2

¼ d3 dh3
¼ d4 dh4

¼ d2

L[i, j] 6 9 11 12
D[i, j]

a1 = 2 B = 10k B = 30k B = 37k B = 45k
L = 6 � 2 = 4 L = 9 � 2 = 7 L = 11 � 2 = 9 L = 12 � 2 = 10
D = 10/
4 = 2.5

D = 30/
7 = 4.286

D = 37/
9 = 4.111

D = 45/
10 = 4.5

a2 = 3 B = 0 B = 20k B = 27k B = 35k
L = 6 � 3 = 3 L = 9 � 3 = 6 L = 11 � 3 = 8 L = 12 � 3 = 9
D = 0 D = 20/

6 = 3.333
D = 27/
8 = 3.375

D = 35/
9 = 3.889

a3 = 5 B = 0 B = 20k B = 27k B = 27k
L = 6 � 5 = 1 L = 9 � 5 = 4 L = 11 � 5 = 6 L = 12 � 5 = 7
D = 0 D = 20/4 = 5 D = 27/

6 = 4.5
D = 27/
7 = 3.857

a4 = 7 Undefined B = 0 B = 7k B = 7k
L = 9 � 7 = 2 L = 11 � 7 = 4 L = 12 � 7 = 5
D = 0 D = 7/

4 = 1.75
D = 7/5 = 1.4
Proof. We prove (1) by contradiction. Suppose two
different rates, r1 < r2, are used for epoch 1 and epoch 2,
respectively, in set H0. Then, we use the method
equalization to move certain amount of data of Pk that are
transmitted in epoch 2 to epoch 1. By doing so, we
equalize the rate in both epochs and reduce the total
energy consumption, which contradicts to the optimality
of rate ropt(t). Now, we prove (2). Suppose there is an
epoch x in H � H0 for which the rate ropt(t) < r, then
we can remove certain amount of data of Pk that are
transmitted in an epoch y 2 H0 and transmit them in epoch
x. By doing so, we reduce the rate for epoch y, increase the
rate for epoch x, and reduce the total energy consumption,
while keeping the deadlines guaranteed. This contradicts
the optimality of rate ropt(t). Therefore, (2) must be true
also. h

3.2. Data intervals and densest data interval

In this subsection, we introduce the key notions,
namely the data interval and densest data interval. To better
sense these notions, let us first briefly outline the DIF pol-
icy. It works in iterations. In each iteration, the DIF policy
does three things:

(1) Identify a set S of unassigned packets and assign a
set E of currently available epochs to them.

(2) Assign a single transmission rate r to every epoch in
E which will be exclusively used for transmitting
packets of set S.

(3) Mark all packets in S ‘‘assigned’’, mark all epochs in E
‘‘unavailable’’ to remaining unassigned packets.

Detailed discussions will be given in the next subsec-
tion. Now, we define data interval and densest (data)
interval.

Definition 7. Given a data set Pk = (Bk,ak,dk), 1 6 k 6 n, a
data interval I[i, j) is defined to be the time interval from the
arrival time ai to deadline dhj

. That is, I[i, j) = [ai, dhj
), if

ai < dhj
, 1 6 i, j 6 n, otherwise it is undefined.

Because multiple packets may share a common arrival
point or a common deadline point, we may have redundant
data intervals, I[i, j) = I[u,v) while i – u and/or j – v. For
example, if a1 = 5, a2 = 7, a3 = 7, d1 = 9, d2 = 9, d3 = 12, then
we have dh1

¼ 9; dh2
¼ 9; dh3

¼ 12. The data intervals are:

I[1,1) = [5,9), I[1,2) = [5,9), I[1,3) = [5,12),
I[2,1) = [7,9), I[2,2) = [7,9), I[2,3) = [7,12),
I[3,1) = [7,9), I[3,2) = [7,9), I[3,3) = [7,12).

The redundancy will not hurt our policy at all because
once any of the redundant intervals has been chosen in an
iteration, other redundant intervals will be updated to
have empty packet sets. With empty packet set, a data
interval becomes inactive. Details will be discussed in the
next section.
Definition 8. For each data interval I[i, j), we define four
variable parameters as follows which may dynamically
change during the rate determination process.

(1) Its data set S[i, j] is the set of packets whose waiting
intervals are contained inside I[i, j) and have not
been assigned epochs yet. Initially, S[i, j] = {Pk|[ak,dk)
# I[i, j)}.

(2) Its data load B[i, j] is the total amount of data con-
tained in S[i, j], that is B[i, j] =

P
Pk2S½i;j�Bk.

(3) Its available time length L[i, j] is the total amount of
time of all epochs in interval I[i, j) that are currently
available. L[i, j] = (dhj

� ai) initially.

(4) Its density D[i, j] is defined as D[i, j] = B½i;j�
L½i;j� if L[i, j] > 0

and D[i, j] = 0 otherwise.

Note that we use left-closed, right-open interval nota-
tions only for time intervals, not for parameters. Let us look
at an example. Given the data set shown in Fig. 1, the 4
initial parameters of each data interval are shown in
Table 1.
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Theorem 1 (Basic Densest Interval Theorem). Given a data
set P = {Pi|1 6 i 6 n}, where Pi = (Bi,ai,di), if the density D[i, j]
of data interval I[i, j) is the largest among all data intervals,
then I[i, j) is called the densest interval, and the following
statements are true.

(1) Any optimal rate policy must assign rate r = D[i, j] to
every epoch in time interval of [ai,dhj

).
(2) Any optimal solution must deliver exactly the packet

set S[i, j] during the time interval of [ai,dhj
).

Proof. We prove (1) by contradiction. Let ropt(t) be the rate
used by an optimal rate policy for the time interval [ai,dhj

).
Suppose ropt(t) – D[i, j] = r in some epoch in [ai,dhj

). We claim
that there must be at least one epoch [ek,ek+1) # [ai,dhj

) such
that the ropt(t) in this epoch is rek and rek > r. This is because,
otherwise we would have ropt(t) 6 r for entire interval
[ai,dhj

) and ropt(t) < r for some epoch in [ai,dhj
), which

implies that
R dhj

ai
roptðxÞdx < r � (dhj

� ai) = B[i, j] and some
data would miss their deadlines. Let ropt(t) = rek > r in epoch
[ek,ek+1) # [ai,dhj

). We extend [ek,ek+1) to a larger interval
[eu,ev). Let [eu,ev) (� [ek,ek+1)) be the longest time interval
in which every epoch has the rate ropt(t) P r. Note that [eu, -
ev) may not contain [ai,dhj

), or vice versa.

Obviously, ropt(t) increases rate at eu and decreases rate
at ev, for otherwise we could extend to an even larger
interval. By Lemma 1, eu must be an arrival point and ev

must be a deadline point. So, [eu,ev) is a data interval and
its density is no larger than r because r is the densest one.
We have ropt(t) P r for entire interval [eu,ev) and ropt(t) > r
for epoch [ek,ek+1) # [eu,ev), thus

R ev
eu

roptðxÞdx >
R ev

eu
rdx

6 B½u;v� ¼
P
½ak ;dkÞ# ½eu ;ev ÞBk, the optimal policy must have

transmitted more data than B[u,v] in the time interval
[eu,ev). Obviously, [eu,ev) – [0,T) for otherwise the optimal
policy would transmit more data than the total load of all
packets, which is impossible. Thus, the optimal policy must
have transmitted a packet Px that arrived before eu or have
a deadline larger than ev in time interval [eu,ev). This
contradicts Lemma 2. Therefore, any optimal rate policy
must use a single rate r = D[i, j] for the time interval [ai,dhj

).
Part (1) is proved.

Part (2) of the theorem directly follows from part (1)
because rate r = D[i, j] is just enough to finish all packets in
S[i, j]. h

If I[i, j) = [a1,T), then our job is done. Otherwise, we need
to continue to find an optimal rate policy for the remaining
intervals ([0,T) � I[i, j)) = [0,ai) [ [dhj

,T) for transmitting the
remaining set of packets P0 = P � S[i, j]. We can see that the
same problem occurs if we treat the remaining set of pack-
ets just like a new set of packets. The only difference is
that, this time, the epochs in I[i, j) are not allowed to use,
because it has been assigned to S[i, j] already.

3.3. Densest Interval First (DIF) policy

As we pointed out, the DIF policy computes transmis-
sion rate in iterations. Specifically, in each iteration, it does
the following:
(1) Re-compute the data set S[i, j] for every interval I[i, j),
1 6 i, j 6 n. The data set consists of all packets whose
waiting intervals are inside [ai,dhj

) and currently
remain unassigned.

(2) Re-compute the data load B[i, j], the available time
length L[i, j], and the density D[i, j] for every interval
I[i, j), 1 6 i, j 6 n.

(3) Find the densest interval I[i, j), and assign the single
rate r = D[i, j] to every currently available epoch in
I[i, j) which will be exclusively used by S[i, j].

(4) Mark all epochs in I[i, j) to be unavailable to next iter-
ation. Mark all packets in S[i, j] assigned.

It is assumed that r = 0 in time interval [0,a1).

Definition 9. A data interval I[i, j) is defined as active if it
has a non-empty data set S[i, j], otherwise, it is inactive.

During execution of DIF policy, packets always change
from unassigned to assigned; epochs always change from
available to unavailable; date intervals always change from
active to inactive. The DIF algorithm stops when all data
intervals become inactive.

We use M[i, j] = 1 and M[i, j] = 0 to denote data interval
I[i, j) being active and inactive, respectively. We use
R[i] = 0, 1 6 i 6 n, to denote that packet Pi has been assigned
and R[i] = 1 otherwise. We use E[k] = 0, 1 6 k 6m � 1, to
denote that kth epoch is unavailable if it has been assigned
to a packet set and E[k] = 1 if it is still available to remaining
packets. Both R[i] and E[k] need be updated after each iter-
ation. Initially, R[i] = 1, 1 6 i 6 n, E[k] = 1, 1 6 k 6m � 1.
Major notations used in this paper are summarized in
Table 2 for the reader’s convenience.

The following is the pseudo code for updating R[i],
1 6 i 6 n, and E[k], 1 6 k 6m � 1, if data interval I[i, j) has
been found to have the largest density in an iteration. Basi-
cally, we will mark those packets whose waiting intervals
are inside [ai,dhj

) with ‘‘assigned’’ and those epochs inside
[ai,dhj

) with ‘‘unavailable.’’

Availability-Update(E[], R[], I[i, j))

1. for k 1 to m � 1 do
2. if [ek,ek+1) # [ai,dhj

) then
3. E[k] 0 //It is possible that E[k] = 0 already
4. endif
5. endfor
6. for i = 1 to n do
7. if [ai,di) # [ai,dhj

) then
8. R[i] 0 //It is possible that R[i] = 0 already
9. endif
10. endfor
Obviously, the time complexity of Availability-Update is
O(n). Let us continue the example of Fig. 1. From Table 1,
we find the densest interval is I[3,2) = [5,9) which has
density 5. Therefore, we assign packet P3 with transmission
rate r = 5 and we also assign epochs E3 = [5,6) E4 = [6,7)
and E5 = [7,9) to packet P3. After the assignment, we set
R[3] = 0 which means P3 has been assigned with a rate
and should be excluded from remaining packet set. We
also set E[3] = E[4] = E[5] = 0, which means that epochs 3,



Table 2
Major notations and their explanations.

Notation Explanation

Pk The k-th packet, Pk = (Bk,ak,dk), with size Bk, arrival time
ak, and deadline dk

Ek The k-th epoch, Ek = [ek,ek+1), the time interval between
event points ek and ek+1

R[k] =0, packet Pk is assigned with epochs, or
=1, packet Pk is unassigned with epochs

E[k] =0, epoch Ek is unavailable, or
=1, epoch Ek is available to remaining packets

I[i, j) =[ai,dhj
), the time interval from the arrival time ai to the

deadline dhj

S[i, j] The set of unassigned packets whose waiting intervals
are contained inside I[i, j)

B[i, j] The total amount of data contained in S[i, j]

L[i, j] The total amount of time of all epochs in interval I[i, j)
that are currently available

D[i, j] =B[i, j]/L[i, j], the data density of I[i, j)

M[i, j] =0, data interval I[i, j) is inactive, or
=1, data interval I[i, j) is active

T[i, j] The set of available epochs in interval I[i, j)

10K 
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a1 d1 
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d4 
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time t 

Fig. 2. An illustration of remaining packets and available epochs after
applying the first iteration by DIF-Policy on the packet set of Fig. 1. Epochs
in shaded area are not available for remaining packets.
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4, and 5 are not available to remaining packets. Finally, we
should set M[3,2] = 0, which means interval I[3,2) becomes
inactive. Once we have found an interval has empty packet
set or undefined, we set this interval to be inactive. Fig. 2
shows the remaining unassigned packets and available
epochs to these packets after the first iteration, where
the time covered by shaded area is not allowed to use for
the remaining packets. As shown in Fig. 2, there are 3 pack-
ets remaining. Since they cannot use the shaded area, P1

must finish by time 5, although its deadline is 6; P4 cannot
start transmission until time 9, although it arrives at 7; P2

can use time intervals [3,5) and [9,12) so that it may be
divided into two segments to transmit accordingly.

As we can conclude from Fig. 2, after each iteration, we
need to re-compute the parameters for each active interval
because the set of remaining unassigned packets and the
set of available epochs change after each iteration. For this
updating, we follow the order of I[i,1), I[i,2), . . . , I[i,n),
i = 1, 2, . . . , n. This order allows us to apply an efficient
greedy approach when we go from I[i, j) to I[i, j + 1).

Because I[i, j) = [ai,dhj
) and I[i, j + 1) = [ai,dhjþ1

), we have
I[i, j) # I[i, j + 1). Thus, we have the following two
sequences of containment relations:
I½i;1Þ# I½i;2Þ# � � � # I½i; jÞ# I½i; jþ 1Þ# � � � # I½i;nÞ ð4Þ

and

S½i;1�# S½i;2�# � � � # S½i; j�# S½i; jþ 1�# � � � # S½i;n� ð5Þ

Moreover, we also have the following sequence of less than
or equal to relations:

L½i;1� 6 L½i;2� 6 � � � 6 L½i; j� 6 L½i; jþ 1� 6 � � � 6 L½i;n� ð6Þ

Based on above observations, the parameters for all
intervals can be computed efficiently by the following
procedure Density-Update. This procedure will mark
M[i, j] = 1 if interval S[i, j] is not empty, and mark
M[i, j] = 0 for other cases. However, parameters S[i, j]
and B[i, j] will be computed for any interval I[i, j) even
if it is marked with M[i, j] = 0 because we need to extend
them through entire sequence, from S[i,1] to S[i,n] and
from B[i,1] to B[i,n]. It is easy to see that undefined
intervals always occur in the beginning segment of the
sequence (4). We set L[i, j] = 0 and D[i, j] = 0 if I[i, j) is
undefined.

Density-Update(E[], R[], n)

1 for i 1 to n do // initialization loop
2 for j 0 to n do //j starts from 0 for looping

purpose
3 M[i, j] 0 // initially, every I[i, j) is inactive
4 S[i, j] £ //£ = empty
5 B[i, j] 0
6 L[i, j] 0
7 endfor
8 endfor
9 for i  1 to n do
10 dh0

 ai //Dummy dh0
is for looping

purpose
11 for j 1 to n do
12 if R[hj] = 1 and ahj

P ai then

//Phj
is unassigned and ½ahj

; dhj
Þ# I½i; jÞ

13 S[i, j] S[i, j � 1] [ {Phj
}

14 B[i, j] B[i, j � 1] + Bhj

15 else
16 S[i, j] S[i, j � 1]
17 B[i, j] B[i, j � 1]
18 endif
19 L[i, j] L[i, j � 1] //Start adding new

epochs
20 for k max{n(dhj�1

), n(ai)} to n(dhj
) � 1 do

21 if E[k] = 1 then //Epoch k is available
22 L[i, j] L[i, j] + (ek+1 � ek)
23 endif
24 endfor
25 if S[i, j] – £ then
26 M[i, j] 1 // I[i, j) is active
27 D[i, j] = B[i, j]/L[i, j]
28 endif
29 endfor
30 endfor
31 End



Table 3
The updated densities of active intervals after the first iteration for the
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Clearly, the procedure Density-Update handles the case
of redundant intervals smoothly. Let us continue the exam-
packet set of Fig. 1.

S[i, j] dh1
¼ d1 dh2

¼ d3 dh3
¼ d4 dh4

¼ d2

6 9 11 12

a1 = 2 P1(10k,2,6) P1(10k,2,6) P1(10k,2,6) P1(10k,2,6)
P4(7k,7,11) P4(7k,7,11)

P2(8k,3,12)

a2 = 3 £ £ P4(7k,7,11) P2(8k,3,12)
P4(7k,7,11)

a3 = 5 £ £ P4(7k,7,11) P4(7k,7,11)

a4 = 7 Undefined £ P4(7k,7,11) P4(7k,7,11)

B[i, j] dh1
¼ d1 dh2

¼ d3 dh3
¼ d4 dh4

¼ d2

L[i, j] 6 9 11 12
D[i, j]

a1 = 2 B = 10k B = 10k B = 17k B = 25k
L = 1 + 2 = 3 L = 3 L = 3 + 2 = 5 L = 5 + 1 = 6
D = 10/
3 = 3.333

D = 10/
3 = 3.333

D = 17/
5 = 3.4

D = 25/
6 = 4.167

a2 = 3 M = 0
inactive

M = 0
inactive

B = 7 k B = 15 k
L = 2 + 2 = 4 L = 4 + 1 = 5
D = 7/
4 = 1.75

D = 15/5 = 3

a3 = 5 M = 0
inactive

M = 0
inactive

B = 7 k B = 7 k
L = 2 L = 2 + 1 = 3
D = 7/
2 = 3.5

D = 7/
3 = 2.333

a4 = 7 M = 0
inactive

M = 0
inactive

B = 7 k B = 7 k
L = 2 L = 2 + 1 = 3
D = 7/
2 = 3.5

D = 7/
3 = 2.333
ple of Fig. 1. After applying the Density-Update to the
remaining set of packets after the first iteration, the densi-
ties of all active intervals are shown in Table 3. Density-
Update can also be used to compute parameters of all data
intervals prior to the first iteration.

It is not difficult to see that the time complexity for
Density-Update is O(n2). First the initialization takes O(n2)
steps. Second, for each i in the loop at line 9, the index j
runs from 1 to n. Moreover, for each index j, the for loop
at line 20 only checks epochs between dhj�1

and dhj
. There-

fore, each epoch is checked at most once through entire
loop for all values of j. Since there are m � 1 < 2n epochs,
only O(n) time for checking is needed for each index i.
Therefore, the time complexity of Density-Update is O(n2).

Based on Availability-Update and Density-Update, the
algorithm of DIF policy is presented in the following. We
assume the input to the algorithm consists of:

(1) Pi = (Bi,ai,di), 1 6 i 6 n.
(2) 0 6 a1 6 a2 6 � � � 6 an, 0 6 dh1 6 dh2 6 � � � 6 dhn = T.
(3) 0 6 e1 6 e2 6 � � � 6 em.
(4) Function n that maps each arrival time ai or deadline

dhj
to its epoch rank.

DIF-Policy(P[], n, m, n)

1 for k 1 to m � 1 do
2 E[k] 1 //Mark all epochs available
3 endfor
4 for k 1 to n do
5 R[k] 1 //Mark all packets unassigned
6 endfor
7 Density-Update(E[], R[], n)
8 find densest active interval I[i, j)

// D[i, j] = max{D[u,v]|M[u,v] = 1}
9 while D[i, j] > 0 do
10 T[i, j] £ //set of epochs assigned to S[i, j]
11 for u n(ai) to n(dhj

) � 1
12 if E[u] = 1 then
13 T[i, j] T[i, j] [ {epoch Eu}
14 endif
15 endfor
16 assign rate r = D[i, j] to all epochs of T[i, j]
17 Availability-Update(E[], R[], I[i, j))
18 Density-Update(E[], R[], n)
19 find densest active interval I[i, j)

// D[i, j] = max{D[u,v]|M[u,v] = 1}
20 endwhile
21 for k 1 to m � 1 do
22 if E[k] 1 then

//All remaining unused available epochs
23 assign rate r = 0 to epoch Ek

24 endif
25 endfor
26 End

358 F. Shan et al. / Computer
For the example of Fig. 1, we observe from Table 3 that the
densest interval is I[1,4) in the second iteration. Since
S[1,4) = {P1,P4,P2}, we assign epochs E1 = [2,3), E2 = [3,5),
E6 = [9, 11), and E7 = [11,12) to packet set {P1,P4,P2}, using
transmission rate r = 25/6 = 4.167. Obviously, the DIF-Policy
for this example finishes after two iterations.

Because there are n packets and at least one packet
becomes assigned by each iteration of the while loop at line
9, the DIF-Policy needs at most n iterations to finish. Since
procedures Availability-Update and Density-Update needs
O(n2) steps, the DIF-Policy has time complexity of O(n3).

Before we prove its correctness, we make few
observations.

Observation 1. The rate assigned to T[i, j] in line 16 is no
larger than the rate assigned in the previous iteration in
the while loop, because in every loop, the densest interval
is removed by Availability-Update.
Observation 2. DIF actually partitions the n packets into
several groups. When the densest interval I[i, j) is identified
in each iteration, all currently unassigned packets con-
tained in S[i, j] are separated from other unassigned packets.
The packets in S[i, j] are to be transmitted with the rate
r = D[i, j] during available epochs in I[i, j).

Observation 3. The packets in S[i, j] are transmitted during
available epochs in T[i, j] with the rate r = D[i, j], where r is
the lowest rate among all epochs in the entire interval
I[i, j) according to Observation 1. In other words, for any
S[i, j], its T[i, j] is composed of epochs with lowest rate
among all epochs in I[i, j).
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Fig. 3. An illustration of rate ropt(t) in interval [eu,ev), where the shaded
area represents epochs that have been assigned to packets in previous
iterations and are unavailable to the (k + 1)st iteration.
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Observation 4. If data interval I[u,v) � I[i, j) is an subinter-
val of I[i, j) when I[i, j) is identified to be the densest inter-
val, then its density is less than or equal to the density of
I[i, j), that is, D[u,v] 6 D[i, j], for otherwise, I[i, j) should not
be the densest.

The correctness of DIF policy will be proved if we can
show that in line 16 of while loop, any optimal overall rate
for available epochs in T[i, j] must equal to r = D[i, j]. This
claim is stated in Theorem 2 which is a generalization of
Theorem 1.

Theorem 2 (Generalized Densest Interval Theorem). In any
iteration of the while loop in algorithm DIF-Policy, let I[i, j) be
the data interval such that D[i, j] = max{D[u,v]|M[u,v] = 1}.
The following are true:

(1) Any optimal rate policy must assign rate r = D[i, j] to
every available epoch in T[i, j].

(2) Any optimal solution must deliver exactly the set of
packets in S[i, j] during epochs of T[i, j].
Proof. We prove this by induction on iterations. By Theo-
rem 1, the claim of Theorem 2 is true for the first iteration,
which serves as the induction basis. Suppose Theorem 2 is
true for the first k iterations, k P 1, we prove that it is also
true for the (k + 1)st iteration.

Let I[i, j) be the data interval such that D[i, j] = max
{D[u,v]|M[u,v] = 1} at the beginning of the (k + 1)st itera-
tion. If D[i, j] = 0 then all packets must have been assigned a
transmission rate in previous iterations and assigning rate
r = 0 to every unused epoch at line 23 is the only choice for
any optimal policy. So, we assume D[i, j] > 0. Let T[i, j] be
the set of all available epochs in time interval I[i, j) = [ai,dhj

)
at the beginning of the (k + 1)st iteration.

Suppose ropt(t), ai 6 t < dhj
, is the rate used by an optimal

policy. By induction, ropt(t) equals to the rate given by the
DIF-Policy for those unavailable epochs at the beginning of
(k + 1)st iteration.

If ropt(t) – D[i, j] = r in some epoch of T[i, j], then we claim
that there must be an epoch [ek,ek+1) # T[i, j] such that
ropt(t) > r. Otherwise, we would have ropt(t) 6 r for all epochs
in T[i, j] and ropt(t) < r in some epoch, which impliesP
½ek ;ekþ1Þ2T½i;j�

R ekþ1
ek

roptðtÞdt < r � L[i, j] = B[i, j] and some data

would miss their deadlines. Suppose ropt(t) = rek > r is used in
epoch [ek,ek+1) # T[i, j]. We extend time interval [ek,ek+1) to
a larger interval. Let [eu,ev) be the longest data interval such
that [ek,ek+1) # [eu,ev) and ropt(t) P r in [eu,ev). Note that
interval [eu,ev) can include both available and unavailable
epochs. ropt(t) increases rate at eu and decreases rate at ev.

By Lemma 1, eu must be an arrival point ax and ev must
be a deadline point dhy

, thus, [eu,ev) is a data interval I[x,y)
and its density D[x,y] is no larger than r at the beginning of
(k + 1)st iteration, because r is the densest density. Obvi-
ously I[x,y) is active at the beginning of (k + 1)st iteration
because it contains [ek,ek+1). Moreover, if time interval
[eu,ev) contains an unavailable epoch marked by a previous
iteration k0 6 k for some densest interval I[x0,y0), then the
time interval I[x0,y0) must be entirely contained inside
I[x,y), that is, I[x0,y0) # I[x,y), because all marked epochs
have a higher rate r0 P r by Observation 1.
Fig. 3 shows the relation between intervals [ek,ek+1) and
[eu, ev) and the relation between ropt(t) and r in interval
[eu,ev).

We can divide all packets whose waiting intervals are
inside I[x,y) into two groups. The first group consists of
those packets that have been assigned epochs and trans-
mission rates by DIF-Policy before the (k + 1)st iteration,
and the second group consists of remaining unassigned
packets at the beginning of (k + 1)st iteration. Let B(1) and
B(2) represent the data loads in these two groups, respec-
tively. Then, at the beginning of (k + 1)st iteration, the
density of I[x,y) is D[x,y] = B(2)/L[x,y], where L[x,y] is the
length of total available time in T[x,y]. Because ropt(t) P r in
entire interval [eu,ev) and ropt(t) is strictly larger than r in
[ek,ek+1), the amount of data transmitted by the optimal
rate in interval [eu,ev) is:

B ¼ Bð1Þ þ
X

½ek ;ekþ1Þ2T½x;y�

Z ekþ1

ek

roptðtÞdt > Bð1Þ þ r � L½x; y�:

Since the density D[i, j] = r is the largest at the beginning
of (k + 1)st iteration, we have r � L[x,y] P D[x,y] �
L[x,y] = B(2). Therefore, we have B > B(1) + B(2), which
implies that the optimal policy transmits some packet Pz

whose arrival time az is smaller than ax or whose deadline
dz is larger than dhj

. Either case contradicts Lemma 2. Part
(1) is proved.

Part (2) of the theorem directly follows from part (1)
because rate r = D[i, j] is just enough to finish all packets in
S[i, j]. h
4. Optimal individual packet scheduling

Once the rate for the densest interval I[i, j) is deter-
mined, we need to schedule the transmission time for each
individual packet that belongs to the set S[i, j]. Inappropri-
ate schedule may cause violation of causality constraint.
Let us continue to look at the example of Fig. 1 from last
section. After DIF policy has identified the intervals [2,5)
and [9,12) that use rate 4.167 for transmitting P1, P2, and
P4, how should we schedule them? If we schedule them
in the order of P1, P2, and P4, one by one, continuously until
finish, then some data in P4 would miss the deadline. This
problem becomes more complicated when we have many
packets in S[i, j]. The DIF-Policy only determines the opti-
mal transmission rate we should use for each epoch, we
need to arrange actual transmission for individual packets.
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Unless we can find a schedule that allows every individual
packet to complete its transmission before its deadline
using the rate determined by DIF-policy, we cannot claim
that we have solved the optimization problem given in
Definition 6. Fortunately, we have found that the well-
known EDF (Earliest Deadline First) algorithm is an optimal
algorithm for this job. We could apply the EDF algorithm
for packet set S[i, j] when DIF has identified the densest
interval I[i, j) in each iteration, but a nicer way is to apply
EDF algorithm just once from t = 0 to t = T, continuously
using the rate determined by DIF-Policy for each epoch.
We present its pseudo code below.

EDF-Schedule(P, m)

1 build a min-heap H using deadlines as the keys.
//Use arrival time to break a tie.

2 for i 1 to m � 1 do
3 if ei is an arrival point then
4 insert those packets that arrive at ei into H
5 endif
6 r r(Ei) //the rate assigned to Ei by DIF-Policy
7 st ei //Starting time for sending next

packet
8 while st < ei+1 and H – £ do
9 Pk packet at the root of H

//Get the packet without extracting it from
heap H

10 ft st + Bk/r //expected finish time
11 if ft > ei+1 then ft ei+1 endif
12 transmit Pk at rate r in time interval [st, ft)
13 if r � (ft � st) < Bk then
14 Bk Bk � r � (ft � st) //remaining size of

Pk

15 else
16 extract Pk from H
17 endif
18 st ft //Next starting time
19 endwhile
20 endfor
21 End

Let us continue to discuss the example of Fig. 1. By the
DIF-Policy, epochs have been given the following rates:
r[2,3) = r[3,5) = 4.167, r[5,6) = r[6,7) = r[7,9) = 5, r[9,11) =
r[11,12) = 4.167. The EDF takes the following steps:

1. At t = 2, P1 has arrived, transmit P1 in [2,3) at rate 4.167,
remaining size = 10 � 4.167 = 5.833.

2. At t = 3, insert P2. P1 is still at the root of H. ft = 3 + 5.833/
4.167 = 3 + 1.4 = 4.4 < 5. P1 finishes at 4.4. Delete P1.

3. At t = 4.4, P2 starts transmission at rate 4.167.
ft = 4.4 + 8/4.167 = 4.4 + 1.92 = 6.32. Since 6.32 > 5,
transmit P2 until t = 5. The remaining size = 8 �
4.167(5 � 4.4) = 8 � 2.5 = 5.5.

4. At t = 5, insert P3. P3 is at the root. ft = 5 + 20/5 = 9 > 6,
transmit P3 at rate 5 to t = 6. The remaining
size = 20 � 5 = 15.
5. At time 6, no insertion. Continue to transmit P3 at rate 5.
ft = 6 + 15/5 = 9 > 7, transmit P3 to t = 7. The remaining
size = 15 � 5 = 10.

6. At t = 7, insert P4, but P3 is still at the root. Continue to
transmit P3 at rate 5. ft = 7 + 10/5 = 9 = next event time.
P3 finishes at t = 9. Delete P3.

7. At t = 9, no insertion. Because P4 is at the root, transmit
P4 at rate 4.167. ft = 9 + 7/4.167 = 9 + 1.68 = 10.68 < 11.
P4 finishes at t = 10.68. Delete P4.

8. At t = 10.68, P2 is at the root. ft = 10.68 + 5.5/
4.167 = 10.68 + 1.32 = 12 > 11, transmit P2 to 11. The
remaining
size = 5.5 � 4.167(11 � 10.68) = 5.5 � 1.333 = 4.167.

9. At t = 11, no insertion. Continue to transmit P2 to 12 at
rate 4.167. Delete P2.

In the rest of this section, we show the correctness of
the EDF-Schedule.

Lemma 3. For a DIF-Policy identified interval I[i, j), if the
assigned epochs in T[i, j] are exclusively used only by packets
of S[i, j] with rate D[i, j], then all packets in S[i, j] can finish
transmission before or at their deadlines by the EDF-Schedule.
Proof. Suppose for the sake of contradiction, packet Pk =
(Bk, ak, dk) is the first to miss its deadline dk. According to
EDF-Schedule, only those packets in S[i, j] whose deadlines
are dk or earlier have been transmitted in T[ak, dk], where
T[ak, dk] � T[i, j] is the set of available epochs in the time
interval [ak, dk). Moreover, the transmission in T[ak, dk] must
be continuous without stopping because there are still
unfinished data in Pk at time dk. Now, we extend this interval
to [t, dk) by finding the earliest time t 6 ak such that in the
available epochs in [t, dk), only packets of S[i, j] with
deadlines dk or earlier have been transmitted and the
transmission has been continuous. The time t must be an
arrival event. (If t were a deadline event, we could find an
even earlier t.) Let t = au6 ak. Further, we can see that in
the time interval [au,dk), only packets arrived at au or later
have been transmitted, for otherwise, we could further
extend au to an even earlier time. Therefore, during the avail-
able epochs in [au,dk) the EDF-Schedule has continuously
transmitted packets that arrived at au or later with deadlines
dk or earlier at rate D[i, j], but still has missed the deadline of
Pk. This implies that interval [au,dk) must have higher density
than D[i, j], contradicting Observation 4. h

Corollary. For a DIF identified interval I[i, j), if the assigned
epochs in T[i, j] are used exclusively by packets in S[i, j] only,
then there are always sufficient data in S[i, j] ready to be trans-
mitted at rate D[i, j].

This observation is true because the available time in
T[i, j] and rate D[i, j] assigned to S[i, j] are just enough to
finish the data load B[i, j]. Since, by Lemma 3, no packet
would miss its deadline, then the transmission in T[i, j]
must be continuous without stopping, which implies there
are always sufficient data in S[i, j] ready to be transmitted
at rate D[i, j].
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Theorem 3. Given a data set of n packets, Pi = (Bi,ai,di),
1 6 i 6 n, the EDF-Schedule guarantees that all packets are
transmitted before or at their deadlines with the transmission
rate determined by the DIF policy.
Proof. By Lemma 3, we only need to show that EDF-Sche-
dule guarantees that for a DIF identified interval I[i, j), the
assigned epochs in T[i, j] are used exclusively by packets
of S[i, j] only.

For the sake of contradiction, let epoch Eh = [eh,eh+1)
� I[u,v) be the first epoch that is assigned to S[u,v] of
interval I[u,v) but is used by EDF-Schedule to transmit a
packet Pk = (Bk, ak, dk) that belongs to S[i, j] of another
interval I[i, j). It is clear that I[u, v) must have been
identified by DIF at an earlier time than that of I[i, j). Thus
we have the following arguments.

First, we claim that dk 6 dv, for otherwise the EDF-
Schedule would not transmit Pk in I[u, v) because, by the
Corollary, there are always sufficient data from S[u,v] to be
transmitted in I[u, v), and data of S[u,v] have earlier
deadlines than dk. It would be impossible to transmit Pk

inside I[u, v). Second, since Pk belongs to S[i, j], we must
have ak < au, for otherwise, Pk would belong to S[u,v]. Third,
we must have dk > au, because Pk is transmitted in
Eh � I[u,v). Thus we have [ak,dk) � I[u,v) = [ak,au). Since in
entire time interval of I[u,v), no epoch is available for S[i, j],
including Pk, Pk must have missed its deadline already at
time au. However, since no violation of the claim occurs
before Eh, this contradicts Lemma 3. h

Theorem 3 shows that the DIF-Policy together with the
EDF scheduling have optimally solved the energy efficient
packet scheduling problem defined by Definition 6. Note
that, the optimal rate for every epoch is unique as we have
proved in Theorem 2. However, the schedule for transmit-
ting individual packets produced by EDF-Schedule may not
be the only way to implement individual packet transmis-
sion to meet the deadline requirement using the rete deter-
mined by the DIF-Policy. For example, if we have 3 packets,
P1 = (2K,0,2), P2 = (3K,0,3), P3 = (1K,2,3). The optimal rate
is 2K per unit time. The EDF-schedule will transmit P1 from
t = 0 to t = 1, then transmit P2 from t = 1 to t = 2.5, and trans-
mit P3 from t = 2.5 to t = 3. Another feasible way is to trans-
mit P2 from t = 0 to t = 1 with 1K data remaining, then
transmit P1 from t = 1 to t = 2, transmit P3 from t = 2 to
t = 2.5, and finally, transmit remaining P2 from t = 2.5 to
t = 3. The EDF-Schedule is only one way to implement indi-
vidual packet scheduling to satisfy the deadline require-
ment and the rate required by DIF-Policy to guarantee
minimum energy consumption. Obviously, EDF-Scheduling
is the most efficient and convenient way to implement indi-
vidual packet schedule after the rate is determined.

5. Online policy and simulation results

In previous sections, we have obtained an offline opti-
mal rate control policy as well as deadline guaranteed indi-
vidual packet scheduling for the energy efficient packet
transmission problem. Based on the offline policy, in this
section we develop an online rate control policy and packet
scheduling with no knowledge of any information of arriv-
ing packets, including arrival time, deadline, packet size,
and distribution of inter-arrival time.

5.1. Previous online policies

An intuitive online policy is whenever a new packet
arrives, apply the offline DIF-policy and EDF-Schedule to
the new packet together with remaining unfinished back-
log packets, and start to transmit according to the new
schedule. This method turns out to be similar to the Backlog
Adaptive (BA) policy proposed in [11] and Online Flush (OF)
scheduler proposed in [5]. Since BA policy and OF scheduler
use the same idea, we refer them as BA-OF policy.

Basically, the BA-OF policy maintains a transmission
(backlog) queue to buffer all unfinished packets. They are
ordered according to their deadlines. Based on the infor-
mation of these backlog packets, the BA-OF policy applies
the offline algorithm to compute the best rate. Whenever
a new packet arrives, it is inserted into the backlog queue,
and the transmission rate is re-calculated accordingly.
Once the rate is computed, packets in the queue will be
transmitted in order.

The way BA-OF policy calculates the rate is as follows.
Suppose current time is t0, and there are k packets, Pi =
(Bi,ai,di), i = 1, 2, . . . , k, buffered. Then, the BA-OF policy
computes rate r0 and index j according to the following
formulas:

r0 ¼ max
06dj6dk

Pj
i¼1Bi

dj � t0
dj ¼ arg max

06dj6dk

Pj
i¼1Bi

dj � t0
ð7Þ

Once the pair (r0,dj) is found, the transmission rate r0 will
be used until packet Pj is entirely delivered or a new packet
arrives. Then, new transmission rate will be computed
again according to (7). It was shown in [11] that if no more
packets arrive, then this policy achieves the same optimal
result as the offline policy can achieve.

The formula (7) actually finds the densest interval for
all intervals starting from current time t0. Moreover, this
online policy uses EDF scheduling for the current densest
interval. Therefore, the previous online policies match
our offline optimal strategy very well.

5.2. Density Guided Cooling(GGC) policy

Although the BA-OF policy works well, it inclines to a
more conservative side. If the next packet has a large size
and an urgent deadline, it will be forced to use a much
higher rate that costs a lot of energy, which could be
avoided or reduced by better prediction and pre-planning.
Fig. 4 illustrates two scenarios. In (a.1) and (a.2), two types
of intersection of packets P1 and P2 are shown respectively.
At t = a1, there is one packet P1 in the queue, so BA-OF deci-
des to use low rates, as shown in epoch 1 of (b.1) and (b.2).
At t = a2, a large packet P2 arrives. There are two cases,
d2 < d1 and d2 P d1. In both cases, as shown by (b.1) and
(b.2), in epochs 2 and 3, BA-OF would be forced to use
higher rates to transmit P2 and the remaining part of P1.
In (c.1) and (c.2), optimal rates are shown for transmitting
these two packets. By comparing (c.1) to (b.1) and (c.2) to
(b.2), we conclude that sometimes it is better to use higher



a1 a2 d1 d2

(a.1) two packets
a1 a2 d1 d2

(b.1) BA-OF
a1 a2 d1 d2

(c.1) OPT
a1 a2 d1 d2

(d.1) DGC

a1 a2 d2 d1

(a.2) two packets
a1 a2 d2 d1

(b.2) BA-OF
a1 a2 d2 d1

(c.2) OPT
a1 a2 d2 d1

(d.2) DGC

Fig. 4. A comparison among BA-OF policy, optimal policy OPT, and the DGC policy.
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rate to transmit current packets in the queue if large
incoming packets are anticipated. However, the difficulty
is that we do not know when the next packet will come
and how large it will be. It is crucially important to make
good prediction and strategy that help to decide on how
much more data should be sent if a higher rate is used.

Fig. 4(d.1) and (d.2) shows the transmission rates by our
online policy which we explain as follows. We use the his-
tory average density as a dividing line to classify large
packets and small ones. Specifically, we first apply Eq. (7)
to calculate rate r0 and ending time dj for current remain-
ing unfinished backlog packets. If r0 is larger than history
average density (rate), which means current packets are
within a high density interval, then our policy adopts the
same rate for the same epochs as BA-OF does. However,
if r0 is smaller than history average density, we anticipate
large packets may come soon, thus we will send more data
by following a well-designed rate function instead of a
constant rate used by BA-OF. This rate function starts with
the history average density which is a higher rate than r0

and gradually reduces to a lower rate, just like the temper-
ature drops of a hot object put in a low temperature envi-
ronment. The formula of dropping temperature according
to Newton’s Law of Cooling is shown in Fig. 5, namely,
r ¼ ða� bÞe�kðt�t0Þ þ b, where a is the temperature of hot
object, b is the lower temperature of the environment
and k is the cooling factor. In our experiment, we redefine
a

r0

b

t0

f(t)=(a-b)e-λ(t-t0)+b

β

t0+d

Fig. 5. The rate function follows an exponential decay, starts at a, goes
down below r0 but guarantees a minimum rate b.
these three parameters and use the same formula. Thus,
we call our online policy the Density Guided Cooling
(DGC) policy. Compared to BA-OF policy, the DGC policy
is more adaptive to large or small incoming packets, and
also guarantees all packets meet their deadlines. The
details are presented below.

We discuss the definition of the three parameters, a, b
and k, one by one. First, let a be the history average density.

Definition 10 (History Average Density). Suppose r(t) is the
history transmission rate, and tp(>0) is the time (an arrival
event point) previous average rate apre was computed. At
time t0(>tp), the new average anew is computed.

apre ¼
P

ek<tp
rðekÞðekþ1� ekÞ

tp
anew ¼

P
tp6ek<t0

rðekÞðekþ1� ekÞ
tp� t0

Set a ¼ tp

t0
, the history average density a is computed as:

a ¼ aapre þ ð1� aÞanew ð8Þ

It is easy to see, Eq. (8) accurately computes the average
density over a finite time interval [0, t0). Note, in real prac-
tical situation where t0 can become too large or goes to
infinite, we set a to be a constant instead. The similar idea
is also used in computing TCP round trip delay time. The
history average density is thus computed in both finite
and infinite scenarios.

Since the history average density is the ‘high tempera-
ture’ a from which the object temperature starts to drop,
we define the ‘low environment temperature’ b at which
the object temperature eventually stops.

In case r0 < a, we define the minimum guaranteed rate b
to be the lower bound of the rate function when it drops.
Note that rate b is always smaller than rate r0. In order
to determine rate b, we introduce the invasion ratio
b (0 < b <1) which is an adjustable constant parameter
defined by Eq. (9). We have tried different values of
b and observed similar results. The simulation results
reported in this paper are obtained by setting b = 0.5.

b ¼ r0 � b
a� b

; 0 6 b < r0 < a ð9Þ
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According to Eq. (9), the minimum guaranteed rate b can be
calculated by (10).

b ¼
r0�ba
1�b ; if ba 6 r0 < a

0; if r0 < ba

(
ð10Þ

Given the ‘high temperature’ a and the ‘low environ-
ment temperature’ b, we determine the ‘cooling factor’ k,
as follows.

k ¼ kðdÞ ¼ A
d

ð11Þ

where A is a value that satisfies the following equation:

1� e�A ¼ bA ð12Þ

The value A can be easily pre-computed given a fixed b. d is
the length of the definition domain of current rate function
that is larger than dj � t0. How to decide d will be discussed
later in the next subsection.

Definition 11 (Rate Prediction Function). At time t = t0,
given the history average density a, the rate r0 and its
ending time dj, the minimum guaranteed rate b, the
cooling factor k, the rate prediction function applied to
period [t0,dj) is defined as follows:

f ðtÞ ¼ ða� bÞe�kðt�t0Þ þ b r0 < a

r0 r0 P a

(
ð13Þ

This formula follows an exponential decay. The exten-
sive use of exponential decay can be found in many nature
sciences, e.g. fluid dynamics, radioactive and heat transfer.

Some rationales for using the proposed rate prediction
function are: (1) In a long run, the densities for future
packets are expected to be around the history average a
statistically. Therefore, our prediction function starts with
rate a. (2) Most packet arrivals follow Poisson processes,
in which, the inter-arrival time follows an exponential dis-
tribution. (3) As time goes by, the remaining data load
becomes less and less, with no need to transmit more data
in advance. The prediction function needs to go below r0 to
save energy instead. (4) The prediction rate should always
be larger than a minimum rate for a given period. This min-
imum rate is b which depending on the situation could be
zero.

Our DGC online policy consists of 4 steps:

(1) Compute the history average density a by Eq. (8),
utilize Eq. (7) to compute (r0,dj), and calculate the
minimum guaranteed rate b by Eq. (10).

(2) Rate prediction function f(t) is set as in Eq. (13), in
which k ¼ kðdÞ is obtained by (11).

(3) Transmit packets at rate f(t) from time t0 until dj.

If all packets are finished before dj, pause until time
dj.
If a new packet arrives at any time before dj, insert it
into the queue in the order of their deadlines.

(4) Goto step (1).
Theorem 4. The DGC online policy guarantees that all pack-
ets meet their own deadlines.
Proof. The BA-OF policy by (7) guarantees that all packets
meet their own delay constraints [5]. Thus, we only need to
show, our DGC policy guarantees any packet be finished
earlier than or equal to the time by BA-OF policy. This is
obvious for r0 P a, we prove this for the case of r0 < a as
follows.

Since in DGC online policy, k ¼ A
d, thus A ¼ k� d.

According to (11) and (12), we have

1� e�kd ¼ bkd

We further compute the total amount of data transmit-
ted by the rate function of (13) in the definition domain of
[t0, t0 + d) as follows:Z t0þd

t0

f ðtÞdt ¼
Z t0þd

t0

ðða� bÞe�kðt�t0Þ þ bÞdt

¼ bdþ ða� bÞ 1
k
� e�kd

k

� �
¼ bdþ ða� bÞd

¼ bdþ ðr0 � bÞd ¼ r0d

This means that the total amount of data transmitted by
the rate function of (13) in time interval [t0, t0 + d) is
exactly equal to the amount that would be transmitted
by the constant rate r0. Since [t0,dj) # [t0, t0 + d) and the
rate function of (13) is a decreasing function, at any point
tx 2 ½t0; djÞ, we must haveZ tx

t0

f ðtÞdt >
Z tx

t0

r0tdt

That is, the data transmitted during interval [t0, tx) by
DGC online policy exceeds that by BA-OF policy, thus,
DGC policy guarantees any packet be finished earlier than
that by BA-OF policy. h
5.3. Simulation results

In our simulations, we set the invasion ratio b = 0.5, as
discussed before. We then have r0�b

a�b ¼ 0:5 and A = 1.59.
According to (11), k ¼ A

d ¼ 1:59
d , so, to compute k, we need

to decide d first. Let c = dj � t0. We set d as follows.

d ¼
2c; if c > avgðdelayÞ
2avgðdelayÞ; otherwise

�
ð14Þ

where avg(delay) is the average delay constraint of all
arrived packets, which can be easily computed similar to
(8). Note that d is re-calculated each time when a new rate
prediction function is calculated, and it may change over
time, because both c and avg(delay) are also updated
dynamically. In summary, the specific rate function used
in the simulation is:

f ðtÞ ¼ 2ða� r0Þe�
1:59ðt�t0 Þ

d þ 2r0 � a r0 6 a

r0 r0 > a

(

From (14), we can see d > c, thus Theorem 4 holds: all
packets can meet their deadlines.

In the simulation, we also carefully model packet
related parameters, including packet arrival, packet size
and packet delay constraint. (i) Following most previous
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works, we model packet arrival as a Poisson process. (ii)
We assume packet size follows normal distribution
Nðs;0:1sÞ, where s is the average packet size. (iii) We
imitate arbitrary packet delay constraint by modeling it
to be a mixed random distribution of three distributions:
uniform distribution Uð0:1q;1:9qÞ, normal distribution
Nðq;0:3qÞ and a modified exponential distribution
EXP(0.9q) + 0.1q, where q is the average delay constraints.
All packets are with delay constraints larger than 0.1q.
We make this assumption because packets must hold a
minimum allowed period [0, 0.1q) to transmit.
Table 4
Energy consumption under different ratio between average packet inter-arrival ti

0.2 0.4 0.6 0.8

DIF(106) 6.59 3.93 3.20 2
BA-OF(106) 7.58 4.51 3.59 3
DGC(106) 7.18 4.33 3.50 3
BA-OF/DIF (%) 115.0 114.8 112.0 110
DGC/DIF (%) 108.9 110.4 109.2 108

(a) the impact of packet size 

(c) the impacket of pac

Fig. 6. The impact of different factors to the average energy consumptions of opti
is packet size 1000, average packet delay constraint 250, average packet inter a
Each value shown in all the following figures and tables
is the mean value of simulation results from 40 random
instances, and in each instance, 300 packets are generated
according to the above model.

We first investigate the performance of our DGC policy
against BA-OF policy.

From Table 4, we can see the BA-OF policy, as well as
our DGC policy, tends to produce near offline optimal
(DIF) results when the ratio between average packet
inter-arrival time and average packet delay constraint
becomes bigger. This is because, when the ratio becomes
me and average packet delay constraint.

1.0 1.2 1.4 1.6

.84 2.67 2.52 2.48 2.35

.12 2.90 2.70 2.63 2.48

.07 2.87 2.68 2.62 2.48

.0 108.5 107.2 106.3 105.7

.1 107.3 106.5 105.9 105.5

(b) the impact of packet delay constraint 

ekt inter-arrival time 

mal DIF policy, BA-OF policy and our online policy DGC. The default setting
rrival time 100.
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bigger than 1, packet delay constraint is smaller than inter-
arrival time, thus packets tend to have deadline before the
next packet arrives, as a result, there is little or no need for
scheduling and all algorithms obtain near optimal results.
However, when the ratio is smaller, BA-OF policy failed
to keep results close to the offline optimal. In these scenar-
ios, we observe that our DGC policy outperforms BA-OF
policy and output results are within constant ratio to the
offline optimal.

In Fig. 6, the default setting is that the average packet
size is 1000 unit, average packet delay constraint is 250 unit
time and average packet inter arrival time is 100 unit. These
three parameters are changed one at a time to study their
impacts. We can see from Fig. 6(a)–(c) that the DGC policy
constantly outperforms BA-OF policy under all settings.
And in almost all cases, the DGC policy outputs results that
are within 110% of the offline optimal. In Fig. 6(a), the aver-
age energy consumption of DGC rises as average packet size
increase, but it is almost constantly around 109% of the off-
line optimal. In Fig. 6(b), the average energy consumption
decreases when the packet delay constraint increase. This
is because the longer the packet delay constraints, the less
urgent these packets are, thus a lower rate can be used to
consume less energy for transmission. In Fig. 6(c), the aver-
age energy consumption decreases when the inter-arrival
time increases. This is because a large inter-arrival time
means a lower arrival rate, thus fewer packets arrive in a
unit time, therefore less energy is consumed. In both (b)
and (c), the curve of DGC is almost parallel to the curve of
offline optimal, which means its performance is stable.

We have done quite extensive simulations and obtained
rich results beyond Fig. 6 can show. All results show the
DGC policy is more adaptive to incoming packets with
parameters dynamically changing and preforms better
than previous BA-OF algorithm.
6. Conclusions

This paper has optimally solved the energy efficient
packet transmission problem for transmitting a sequence
of packets with arbitrary deadlines. A notion of data inter-
val is introduced and a new technique called densest inter-
val first (DIF) is proposed to capture the nature of this
difficult problem. The EDF (Earliest Deadline first) schedul-
ing is proven to be optimal and efficient to schedule each
individual packet after the DIF policy has determined the
transmission rate for each densest interval. Finally, this
paper has proposed an online policy called DGC algorithm.
Simulations show that by better prediction and pre-plan-
ning, DGC policy constantly produces a rate function that
is within 110% of the optimal result. The combination of
DIF-Policy and EDF-Schedule would provide a generic
approach for other energy efficient research problems with
different system models such as energy harvesting sys-
tems, multi-channel systems, and fading channels.
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