IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

4411

Offloading Delay Constrained Transparent
Computing Tasks With Energy-Efficient
Transmission Power Scheduling in
Wireless IoT Environment

Feng Shan
and Weiwei Wu

Abstract—Billions of lightweight Internet of Things (IoT)
devices have been deployed for various applications nowadays.
Most of them first collect interested data and then process
them in some degree according to application requirements.
Transparent computing (TC) is a promising technique that makes
such lightweight devices suitable to process even large-size appli-
cations. The advantage of TC is to separate code storage from its
execution, allowing IoT devices to load code blocks from nearby
TC storage server on demand. Distinct from existing work, this
paper allows the TC IoT devices to offload some tasks to servers,
since wireless IoT devices are usually powered by batteries, hav-
ing limited energy resources. If a task is offloaded, a challenging
problem is that its input data collected by the IoT device must
be transferred as well, which incurs additional transmission time
and energy. This paper proposes a two-step approach aiming at
minimizing the energy consumption of the IoT device while satis-
fies the delay constraint. This approach first studies the offloading
decision problem that determines for each task whether to offload
task data or load task code blocks, while loading code indicates
code receiving and executing energy cost. Second, the transmis-
sion power scheduling problem is investigated to further reduce
offloading energy for a given delay constrained offloading task
set. Heuristic decision making algorithms and optimal power
scheduling algorithm are proposed, respectively. Such two-step
approach is shown by extensive simulation to be near optimal for
the original problem thanks to the optimal design of the power
scheduling algorithm.

Index Terms—Delay, energy-efficient, Internet of Things (IoT),
offloading, scheduling algorithms, wireless transmission.

Manuscript received May 15, 2018; revised August 3, 2018 and October 26,
2018; accepted November 16, 2018. Date of publication November 29, 2018;
date of current version June 19, 2019. This work was supported in part by
the National Key Research and Development Program of China under Grant
2017YFB1003000, in part by the National Natural Science Foundation of
China under Grant 61702097, Grant 61320106007, Grant 61632008, Grant
61702096, Grant 61602112, and Grant 61672154, in part by the Jiangsu
Provincial Natural Science Foundation under Grant BK20170689 and Grant
BK20160695, in part by the Aeronautical Science Foundation of China under
Grant 2017ZC69011, in part by the Jiangsu Provincial Key Laboratory of
Network and Information Security under Grant BM2003201, in part by
the Fundamental Research Funds for the Central Universities under Grant
2242018K41047, and in part by the Key Laboratory of Computer Network
and Information Integration of the Ministry of Education of China under Grant
93K-9. (Corresponding author: Junzhou Luo.)

The authors are with the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China (e-mail: shanfeng@seu.edu.cn;
jluo@seu.edu.cn; jjin@seu.edu.cn; weiweiwu@seu.edu.cn).

Digital Object Identifier 10.1109/JI0T.2018.2883903

, Member, IEEE, Junzhou Luo, Member, IEEE, Jiahui Jin

, Member, IEEE,
, Member, IEEE

I. INTRODUCTION

ITH the popularity of the Internet of Things (IoT), bil-

lions of lightweight IoT devices such as smart city
monitors, smart home devices, and industrial sensors, are
deployed. Most of these IoT devices collect interested data
from deployed environment and process them in some degree
according to application requirements. Transparent computing
(TC) is an efficient way to make such lightweight devices more
powerful, suitable, and secure for processing and executing
even large-size applications. The core of TC is to separate code
storage from its execution, allowing IoT devices to load code
blocks from nearby TC storage servers on demand [1]-[6].

A typical TC IoT device loads application code blocks and
performs local execution on demand in order to guarantee
low response time for delay sensitive applications. Since most
IoT devices are battery powered, they are usually limited in
resources, such as low energy supply. We hence allow one
more option for IoT devices, i.e., to select and offload a por-
tion of tasks to TC servers for remote execution, because these
TC storage servers usually have more computation and energy
resources. However, if a task is offloaded to the servers, its
collected data as input must be delivered to the servers as
well since these tasks are to process these data collected by
IoT devices. This will incur additional transmission time and
energy. Such scenario is illustrated in Fig. 1.

Assume each task data transmission has its own comple-
tion delay constraint. Then, an IoT device has two options
in executing a task—it either: 1) receives task code blocks
from the TC server to execute locally, referred as loading
(task) code blocks or 2) sends the collected data to the TC
server to execute remotely, referred as offloading (task) data.
In order to minimize the energy consumption and satisfy the
delay constraint, this paper proposes a two-step approach. We
first study the offloading decision problem and then investigate
the transmission power scheduling problem.

The offloading decision problem balances energy consump-
tions between offloading data and loading code. An intuition
behind is, some tasks may have large data amount and tight
deadlines to offload but small code block to load and exe-
cute, while other tasks may have small data amount and loose
deadlines to offload but large code block to load and execute.

2327-4662 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7398-8265
https://orcid.org/0000-0001-9570-1456
https://orcid.org/0000-0001-9172-6955

4412

TC Server
[]

=Remote Execution
(Task Offloading)

O _ Data Collected
(j/ by loT Device
O

Local Execution

®e
-

TC loT Device

L
t’ ™ Wireless

Network™

D)

TC IoT Device

Fig. 1. Typical TC IoT device loads application code blocks from a nearby
TC storage server and performs local execution on demand. Since IoT devices
are usually powered by a battery, having limited energy resources. We hence
consider one more option: offloading tasks to the server for remote execution.
However, if a task is offloaded, its input data collected by the device must be
transferred as well, which incurs additional transmission time and energy.

Hence, choose the right set of task set to offload/load is impor-
tant to minimize total energy consumption for an IoT device
to transmit data, receive, and execute code.

Once the loading task set is determined, the local execution
code blocks are determined. We hence assume the local execu-
tion energy of each task can be estimated by code analysis [7].
According to previous research [8], for a task, the receiving
(code loading) energy is proportional to the code block size,
while the transmitting (data offloading) energy is related to
not only the data size but also its transmission delay and the
channel status.

The transmission power scheduling problem focuses on
minimizing transmission energy for a given set of tasks.
By Shannon-Hartley theorem on wireless channel capac-
ity, a slower transmission rate is preferred to save energy,
while a higher rate is preferred to shorten transmission delay.
Moreover the worse channel quality/state, the higher transmis-
sion power is needed to reach a fixed data transmission rate;
while the better channel state, the lower power to reach the
fixed rate. Hence, an optimal transmission rate considers not
only the data amount, deadline of each offloading task, but
also the wireless channel states.

Such two problems form a two-step approach toward min-
imizing IoT device energy consumption. We can see that the
offloading decision made in the first step will directly affect the
energy consumption in the second step. Inappropriate offload-
ing task set (e.g., with tight data transmission deadlines when
channel quality is low) will increase the transmission energy
even if optimal power scheduling can be found for this task
set. Such connection must carefully managed in algorithm
designs.

The contributions of this paper are summarized as follows.

1) We propose to offload delay constrained TC tasks from

the IoT device to the TC storage server to save IoT
device energy. We formulate this problem and introduce
a two-step approach via two subproblems: a) the offload-
ing decision problem and b) the transmission power
scheduling problem to reduce energy consumption and
satisfy delay constraint.

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

2) We analysis the relationship between the two subprob-
lems. For the first offloading decision problem, we
present two heuristic algorithms to iteratively solve
it from two different directions, i.e., the break-down
approach and the building-up approach.

3) For the second transmission power schedule problem
with a given offload task set, it is discovered to be
a longstanding open question. We design the highest-
water-level interval first (HIF) algorithm to solve it
optimally in which novel concepts, namely data interval
and its water level, are introduced. By iteratively locat-
ing the data interval with the highest water level, the
HIF policy computes the optimal power schedule.

4) The proposed two-step approach is shown by exten-
sive simulation to be near optimal for the original
problem. These proposed algorithms are also compared
to a simple baseline method.

This paper is organized as follows. Section II introduces the
system model and defines the problem. Section III proposes
to decompose this problem and discusses two heuristic algo-
rithms for making offloading decision. Section IV presents the
HIF algorithm that optimally solves the transmission power
scheduling problem. The simulation results are discussed in
Section V. Related works are given in Section VI. Section VII
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a TC system consisting of a lightweight wire-
less IoT device, a storage cache server, and a single user
point-to-point wireless fading channel between the device and
the server. Let T = {T, T, ..., T,} be a set of n tasks gener-
ated at the IoT device. For any task 7;,i = 1,2, ..., n, we use
arrival time (event) a; to denote the time that it is generated
and ready for processing. Since the IoT device may gener-
ate a task at any time, we sort all the tasks by their arrival
times such that a; < ap < --- < a,. The task code block
size is assumed to be c¢;. We assume the execution energy
on an IoT device can be estimated by code analysis, and is
denoted as e;. Let the input data size be b; and assume its data
transmission deadline (event) is d; (> a;). Note that such dead-
line can be easily obtained from the task completion deadline
since its execution time on a powerful server is predictable.
We assume arbitrary deadline for task 7;, which is the most
generate model in the literature. If we sort the deadlines such
that d;, < dy, < --- < d,,, then sequence g1, q2, ..., g, may
be any permutation of 1,2, ..., n. Hence, a task can be rep-
resented by a quintuple, 7; = (a;, b;, d;, ci, €;), where a; is the
task generate (arrive) time, b; and d; is the input data size and
its transmission deadline, respectively, ¢; and e; is the code
block size and its local execution energy, respectively.

The execution of a task 7; requires both code blocks orig-
inally located at the server and the input data collected and
stored at the IoT device. A task 7; has two execution options,
either: 1) locally at the IoT device which requires its code
block with size ¢; to be delivered from the server and consumes
e; execution energy, referred as loading (task) code blocks or
2) remotely at the server which means a total of b; collected

SHAN et al.: OFFLOADING DELAY CONSTRAINED TC TASKS WITH ENERGY-EFFICIENT TRANSMISSION POWER SCHEDULING

TCledge
Server

Code Blocks
size ¢;
energy e;

Collected Data
size b;
deadline d;

TC IoT
Device

arrive/generate time a;

Fig. 2. There is an IoT device and a TC server in our system. Each task
T; = (aj, bj, d;, ci, e;) executes either locally at the IoT device or remotely
at the server. Task T; is generated (arrives) at time a;, and local execution
requires its code block with size ¢; to be loaded (received) and the local
execution energy is e;; while remote execution requires a total of b; collected
data must be offloaded (transmitted) to the server before deadline d;.

data must be transferred from the device, referred as offload-
ing (task) data. Such system model is illustrated in Fig. 2. For
a data offloading task 7;, its data transmission can start only
after its arrival time a; and must finish before its deadline d;.
Such constraints are called the causality constraint [9].

Define the offloading decision vector X, whose elements are
binary variables

x; =1{0, 1} Vie[l,n] (1)

where x; = 0 indicates that task 7; is executed locally at the
IoT device (code loading task) and x; = 1 means that it is
executed remotely at the server (data offloading task).

Our focus is the energy consumption of the IoT device,
which consists of three major parts, i.e., the data transmit-
ting energy for data offloading tasks, the code block receiving
and executing energy. According to previous works [8], the
receiving energy E; for task 7; is proportional to the code
block size c;. Hence, we have

Ei=ac;, i:x=0 2

where « is a constant factor. In the following, we introduce
the transmitting energy.

Following previous works [9]-[18], we assume the wireless
channel for data transmission has a dynamic channel qual-
ity, represented by a time-vary channel states, or equivalently,
the fading factor. Although the channel quality varies as time
goes by, we assume it is constant in a small time interval.
Assume the channel quality changes only at these m time
points, f1,/2, ..., fn in the interested time duration [a1, dg,].
Such time points are also called fading changing event points.
Now, we have n arrivals, n deadlines and m fading changes in
consideration. We say there is an event sequence consisting of
2n 4+ m events, including arrival events, deadline events, and
fading changing events, see the time axis of Fig. 4 to find an
example sequence. For presentation clarity, we assume no two
events occur at the same time. If it indeed happens, we can
treat them as occur in sequence with very small interval, and
then our proposed algorithm applies.

The time interval between two adjacent event points is
called an epoch, named as epoch t,t = 1,2,...,t, where
T = 2n + m — 1. Denote the length of the epoch ¢ as ;.
Obvious, the fading factor is constant in any epoch. Denote

4413

time-varying fading factor as h, where element #; is the fading
factor in epoch t.

The IoT device is assumed to be able to adaptively change
its transmission power and its corresponding transmission rate.
Following previous works [9]-[19], we assume in epoch ¢, the
transmission power py, the transmission rate r; and the fading
factor h; is related through the following function:

ry = log(1 + hypy) vVt e[l, t]. 3)

Definition 1 (Task Data Transmission Rate): The task data
transmission rate r; is vector whose element r;;, ¢t =
1,2, ..., 7 is the transmission rate for task i in epoch z.

Then, in epoch ¢, the transmitted data amount from task
T; is Ly, where i = 1,2,...,n, t = 1,2,..., 7. Note, it
is assumed that the data of a task can be transmitted in any
segments.

By the causality constraint, task data transmission rate must
satisfy the following equation:

T §d)—1
Dbrii= Y hrig=bi, i:xi=1)
=1 1=£(ai)

where function £(-) is used to map each event point to its
rank in this event sequence. For example, £(ay) is the rank
of arrival event a; in the sequence. Function £(-) is easy to
obtain and known before scheduling.

Then, the overall data transmission rate in epoch ¢ can be
calculated as

ry = E Vit

i:xi=1

v e [1, 7l. (5)

By connecting the transmission rate r; to the transmission
power p; in epoch ¢ through (3), we present the total energy
consumption E of the IoT device as

T
E= (Ei+ei) + Z lip: . (6)
ini=0 =1
—— N’

rece. & exec. code send data

Our goal is to minimize E. We define our offloading min-E
problem as follows.

Definition 2 (Offloading Min-E Problem): Given a set of
tasks T and the time-varying fading factor h, the minimum
energy TC offloading problem is to determine the offload-
ing decision variable x and the task data transmission rate
ri,i = 1,2,...,n such that the total communication energy
consumption E in (6) is minimized while constraints (1)—(5)
are satisfied.

In this paper, we consider the offline problem, where T and
h are known in advantage before schedule. The indepth study
of the offline problem provides important insights and may
help in solving online problem. This is because, the study
of the offline problem reveals basic properties and important
essentials of the problem, which may guide the design of the
online algorithm.

4414

Task set generated at the TC IoT device

Step 1: divide task set (offlpading decision problem)

Loading task set (local exec.) Offloading set (remote exec.)

dd-d| dd-d

(load task code blocks) (offload task data)

Step 2: minimize pnergy (trans-
mission power sclleduling problem)

consumelenergy
v

Code receiving energy
Execution energy

Data transmission energy

Channel quality

Tt T 1 Tk : I
- T3 deadlines

Fig. 3. Two-step approach to minimize the energy consumption of the IoT
device, which includes the code receiving and execution energy and the data
transmission energy. Note, for a task, the code loading (receiving) energy
is proportional to the code block size, while the data offloading (transmit-
ting) energy depends on not only the data offloading task set itself, including
data size, arrival time, and deadline but also depends on the channel quality
and how many tasks to share this channel. Hence, we propose the transmis-
sion power scheduling problem (step 2) to minimize the data transmission
considering the transmission delay constraints.

III. PROBLEM DECOMPOSITION AND OFFLOADING
DECISION MAKING

It is quite challenging to solve the offloading min-E problem
directly. This is because this problem aims at minimizing the
sum energy consumption of the IoT device, which consists of:
1) the code receive and 2) execution energy and 3) the data
transmission energy. The code receive and execution energy,
i.e., the first two energy, can be directly determined once the
code loading task set is determined. However, the data trans-
mission energy, i.e., the third energy, is quite complicate to
minimize.

We hence propose a two-step approach to decompose the
offloading min-E problem, as illustrated in Fig. 3. The offload-
ing decision problem is studied in the first step to divide the
task set generated at the TC IoT device into code loading task
set and data offloading task set. According to previous analy-
sis [8], for any task in the loading task set, its code loading
energy by wireless receiving is proportional to the code block
size and the code execution energy can be estimated by code
analysis, so the energy consumption to load and execute tasks
is determined once the loading tasks are determined. However,
data transmission energy for the offloading task set is related
to not only the data size but also its transmission delay and
the channel quality. Then, the transmission power schedul-
ing problem is investigated in the second step to minimize
the transmission energy by adaptively change the transmis-
sion power while satisfy individual task deadlines and consider
channel quality. This problem is a longstanding open question.

The two problems are highly coupled since the offloading
task set output by step 1 is the input for step 2 to minimize

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

Algorithm 1: Break-Down

1p=0.5// control parameter for
switching ratio

task

2 T={T,T,,...,T,};

3 while frue do

4 Initialize vector E™Prove = (;

5 foreach T; € T do

6 Eofioaa = HIF(T) — HIF(T/T;);

7 Ejoaa = aci +ej;

8 E;mpmve = Loffload — Eloaa

9 end

10 if ;""" < 0 for Vi then break;

1 Let n-¢ be the number of E;"""" > 0;
12 Select top p * n~q tasks from E""0v¢;
13 Update T by subtracting these tasks;
14 end

15 return T,

the transmission energy. To decouple the two problems and
reduce the complexity, we assume there is an algorithm that
optimally solve the transmission power scheduling problem for
a given offloading task set. Let us call such algorithm HIF.
Our basic idea is to iteratively refine the offloading task set and
repeatedly invoke HIF. In such way, we make the offloading
decision for each tasks.

More specifically, our core idea to decide a specific task
to be executed remotely or locally is to estimate the energy
consumption for both options and choose the more energy
efficient one. The basic idea on estimating is to invoke the
optimal HIF algorithm twice, once include this specific task
in input offloading task set and once without it but includ-
ing it in the loading task set. This energy difference is used
to estimate the energy consumption of this specific task.
Based on this basic idea, we propose two symmetrical algo-
rithms to make the offloading decision from two different
directions, i.e., the break-down approach and the building-up
approach.

In the break-down approach, every task is initially included
in the offloading task set and the loading task set is empty.
We invoke the HIF algorithm to compute the minimum total
energy in transmitting these data to the server. Then we sub-
tract each task from the offloading task set, one at a time, and
invoke again the HIF to compute new energy consumption.
The energy difference is the energy saved by not offloading
that task to the server. Then that task must execute locally,
where we can easily compute its energy consumption on
receiving code and execution it. As a result, the data trans-
mission energy is reduced but the code receiving energy is
increased, the IoT energy consumption can be reduced if
the decrease is greater than the increase. We compute the
improvement for every task and select these tasks with the
greatest energy improvements to switch they from offloading
to loading. After updating the offloading task set, the same
problem repeats. A formal algorithm of these steps is give in
Algorithm 1.

SHAN et al.: OFFLOADING DELAY CONSTRAINED TC TASKS WITH ENERGY-EFFICIENT TRANSMISSION POWER SCHEDULING

Algorithm 1 works in iteration. In each iteration, a number
of tasks are switched from offloading task set to loading task
set. After task sets are updated, the same procedure repeats
in the next iteration. At the begin of an iteration, suppose the
current task set is a subset of the entire task set, i.e., T C
{1, T>, ..., Ty}, and T; = (a;, bj, d;, ci, e;). Then Estioad =
HIF(T) — HIF(T/T;) is the energy saved in not offloading the
collected data of 7; to the server. If the task 7; execute locally
at the device, then energy used to receive code blocks from
the server and the execution these code blocks are Ejoaq =
ac; + e;. Hence, the possible IoT device energy improvement
can be calculated as Eofoad — Eload, NOte it is possible that this
improvement value is negative. We compute such improvement
for every task 7; € T, and store it into an array EImPrVe ag
in the foreach loop. In E™P™¥¢ only element with positive
value indicts a real energy saving improvement. Let n- ¢ be the
number of positive elements, and we select a portion p of the
such tasks to switch from offloading to loading, i.e., top p*n=g
task from E™Pr¢ The iteration stops when array Eimprove
contains no positive element, i.e., no task can be switched to
make a IoT device energy consumption improvement.

Note that, parameter p in line 1 is the control parameter for
task switching ratio, i.e., how many task can be switched in a
single iteration. It also controls the tradeoff between the speed
and accuracy of this algorithm. We will discuss such tradeoff
in detail in simulations.

Another approach is the build-up approach, which initially
assume all tasks are in code loading task set and execute
locally, hence incurring the code block receiving and execut-
ing energy. By testing every task 7;,i = 1,2,...,n, we can
select the top pn-¢ tasks that improve the IoT device energy
consumption by switching from code loading to data offload-
ing. After updating the offloading task set T by including these
tasks, the same problem repeats. The iteration stops when there
is no task whose switch can reduce the IoT device energy con-
sumption. The details of algorithm build-up is quite similar to
Algorithm 1, we omit it for space limitation.

IV. TRANSMISSION POWER SCHEDULING

This section studies the transmission energy consumption
minimization problem for a given set of offloaded tasks. This
problem is first formally defined and the novel notion water
level is introduced. Some basic properties for the optimal
water levels are presented; and then the optimal HIF policy is
introduced; lastly, the correctness of HIF policy is proved.

Definition 3 (Transmission Power Scheduling Problem):
Given a set of tasks T and the time-varying fading fac-
tor h, the minimum energy problem is to determine the task
data transmission rate r;, i = 1,2, ..., n and the transmission
schedule for each task such that the total transmission energy
consumption is minimized

T
min. Z Lip;
=1

st. r, =log(1 + hyp;) vVt e[l, 1]

4415

channel quality 1/h

auflfz

@ &
1 1

I'data size bl: ' I data q'ize by
N T
I deadline : I , deadline
Iidata size by! | '
2f ' i

|
! dealdline

T data b '

deadline

tasks

Fig. 4. Transmission power scheduling problem. It is a longstanding open
question, which we solve optimally. Tasks are allowed to have arbitrary arrival
times, arbitrary deadlines and arbitrary data sizes. The time-varying fading
factor h is allowed to be arbitrary. The goal is to determine a transmission
power schedule such that the transmission energy consumption is minimized.
In this example, there are four tasks and six fading changes, and 13 epochs
in blue.

T §(d)—1
Yhria= Y hriy=b Vielln]
=1 1=§(a;)

n
= Zr,;, Vtell, t].
i=1

The transmission power scheduling problem is an open
question for many years since Prabhakar er al. [10] and
Uysal-Biyikoglu et al. [11] formulated a simple version of this
problem more than a decade ago. Many researchers have been
working to analytically solve this problem but only partially
progress has been made [9], [12]-[16]. Fig. 4 is an example
of this problem in which there are four tasks and six fading
changes.

It is not hard to find that to determine the task data trans-
mission rate r;,i = 1,2, ..., n, it is enough to determine the
determined the overall transmission rate r;,t = 1,2,...,T.
This is because we can always schedule the task data trans-
mission according to the earliest deadline first (EDF) policy
to fulfill the overall rate r;. In this way, the transmission rate
r; for each task can be determined. By (3), transmission rate
ry and transmission power p; uniquely determine each other,
therefore, solving the transmission power scheduling problem
is equivalent to compute the power schedule p; for each epoch
t=1,2,..., 1.

We propose a novel notation water level related to p; as
follows.

Definition 4 (Water Level): For any given power schedule,

pi,i=1,2,..., 7, the water level w; is defined as
pr+ hl, if p, #0
undefined, otherwise

where 4, is the fading factor.
The notation water level w; is introduced and inspired by
the analysis in Appendix A. Then, given water level wy, we

4416

p
-===- water level w

—— 1/h S
__________ I
Py
-
bl |
1
i ,
1/hd
1, 2 .3 .4 5, 6,7,8,l9 10, 11 12 13 !
T 1 T 1 L T 1 LI i
av i o Jida 1o T 4Ty d
| Y e —

I + 1 |
Tof 5 !

o

Fig. 5. Illustration of the optimal water level woP! for the example given in
Fig. 4. From this figure, we can see that w°P' and p°P! uniquely determine
each other since h is known in advance. Note that the water level is undefined
in epochs 5, 6, 7, 11, and 12, where transmission power is zero.

can compute p; using formula

1 +
Pt=<Wt—h—t> .

Obviously, the optimal power schedule p°?* and the optimal
water level woP' uniquely determine each other. We will there-
fore focus on the optimal water level w°P'. An illustration of
the optimal water level is given in Fig. 5.

In the rest of this section, we focus on solving the trans-
mission power scheduling problem by computing the optimal
water level woP',

opt

A. Basic Properties of Optimal Power Policy

We first present some basic properties that any optimal water
level wOP' must have.

Lemma 1 (Water Level Equalization): For any power sched-
ule, if in epochs i and j, the water levels do not equal, assuming
w; < wj, then a shared water level w, w; < w < wj, can be used
in both epochs to improve the schedule unless the causality
constraints do not allow.

Proof: See Appendix B. |

As an immediate result of Lemma 1, if there is only one
task to transmit data, then the optimal water level is constant
over epochs regardless of the fading level. This result is consis-
tent with the famous water-filling method [22]. When multiple
packets are in consideration, the water level changes because
of the causality constraints. The changes have the following
properties.

Lemma 2: In wPt, if two water level wl-Op ' and w](-)p ' are
adjacent, i.e., there is no water level (defined) between epochs
i and j, and if w; < w; (w; > wj), then there must be a(n)
arrival (deadline) point in between them.

Proof: See Appendix C. |

Note, two adjacently defined water levels may or may not be
in two adjacent epochs, since in some epochs, the water level
may be undefined. We explain this lemma using the example
wOPl in Fig. 5. In w°P!, two water levels wipt < wgpt are adja-
cent since no water level is defined in epochs 5 and 6 by this
lemma, there must be an arrival point in epochs 5 and 6; two
levels ngt > w(fgt, then the border of the two epochs must

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

. . t t . . .
be a deadline; since w(l)g > w(l)g , a deadline point must be in

between them according to this lemma.
Lemma 3: Let Ty = (ay, by, d, ck, ex) be any task whose
data is transmitted according to the optimal water level wP',
Let H be the set of all epochs contained in time interval
[ak, di), and H' C H be the subset of H which is not used to
transmit 7;. The following two statements are true.
1) The water level w°P' used for any epoch of H — H’ must
be the same water level w.

2) The water level wP' used for any epoch of H' must be
higher or equal to the water level w.
Proof: See Appendix D. |

We use w°P! in Fig. 5 to explain this lemma. Take T3 as an
example. Its H set contains epochs 7-9 which transmit no other
task data, so H' = @. According to this lemma, water level in
H — H', i.e., epochs 7-9, must be equal. Take T, as another
example. Its H set contains epochs 4-11, while H' contains
epochs 7-9 since they are used to transmit 73. According to
this lemma, water levels in H—H’, i.e., epochs 4 and 10, must
be equal to a value w, and water level in H’ must be equal to
or higher then w.

B. Water Level and Its Computation

With the optimal properties prepared, this section intro-
duces how to compute the water level. But before that, we
first introduce one related definition.

Definition 5 (Data Interval [19]): Given a task set Ty =
(ag, by, di, ck, er), 1 <k < n, the data interval I[i, j] is defined
as the time interval from the arrival time a; to the deadline dqj,
1 <i,j<neg, lIlj = [ai,dqj) when a; < dqj. Ii, j] is
undefined, when a; > dqj.

Note that d,, < dy;, < --- < d, and sequence
q1,92, ..., qn is a permutation of 1,2, ..., n.

Our proposed HIF policy works in iteration. We define the
following four parameters for each data interval I[i,j], 1 <
i,j < n, which will be modified in each iteration.

1) The task set S[i,j] is the set of tasks whose arrival
time and deadline are both contained inside I[i, j] and
have not been assigned epochs yet. Initially, S[i,j] =
{Prllax, br) < 111, j1}.

2) The data load B[i, j] is the sum amount of data contained
in S[i, /], i.e., B[i,j] = ZTkGS[M] by.

3) The available epochs T[i,j] is the set of all avail-
able epochs contained in interval I[i, j]. Initially, TT[i, j]
contains all epochs in interval [a;, dqj].

4) The water level W1, jl, as a constant
value, transmits B[i,j] data in TI[i,j], e.g,
Bli,j]l = ZteT[i,j] It log(h:WTi, j]).

Major notations used in this paper are summarized in Table I

for the reader’s convenience.

For the example illustrated in Figs. 4 and 5, I[2,3] =
laz, dgy) = laz, da); the task set S[2, 3] = {12, T3}, the data
load B[2, 3] = b> + b3; the available epochs T[2, 3] includes
epochs 4-11; W[2, 3] is a shared water level for epochs in
T[2, 3] to transmit B[2, 3] data. Although the W[2, 3] is not
shown in the figure, its exact value can be computed by the
classic water-filling technique: water can be gradually filled

SHAN et al.: OFFLOADING DELAY CONSTRAINED TC TASKS WITH ENERGY-EFFICIENT TRANSMISSION POWER SCHEDULING

TABLE I
MAJOR NOTATIONS AND THEIR EXPLANATIONS

Notation | Explanation

Ty The k-th task T} = (ak,bk,dk,ck,ek), with arrival time
ay, data size b;, transmission deadline d;, code block size
ci, execution energy e;

h; fading factor (channel quality) in Epoch ¢

Ty zr = 0 indicates that task T} is executed locally at the
IoT device (code loading task) and x; = 1 means that it is
executed remotely at the server (data offloading task)

I, 4] = [ai, dg,), the time interval from the arrival time a; to the
deadline dg;

Sz, 7] the set of tasks whose arrival time and deadline are both
contained inside I[i, 5] and have not been assigned epochs
yet

Bli, j] the sum amount of data contained in S|z, j]

Ti, 5] the set of all available epochs contained in interval [z, 5]

Wi, 3] | a constant value transmits Bli,j] data in T[i,j]|. e.g.,

Bli.j) = yerps) b los(h W1,).

Algorithm 2: IntervalWaterLevel({[, j])

1 H=sort(h) // sort epochs such that the
channel fading factors are in
non-increasing order

2 for g < 1 to K do

3 w=1/H,;, B=0;

4 for k=1 to K do

5 | if w > 1/hy then B = B + I log(why);

6

7

8

9

end

if B > B[i, j] then break;
end
Solve Bli, jl = Y971 Iy log(wihy);
return w,

-
=)

into interval epochs 411, and stops filling as soon as the corre-
sponding transmission power can support transmitting b, + b3
data. Such water level is W2, 3].

Since computing W[i, j] is one of the most important steps
of HIF policy, we specifically design an efficient Algorithm 2
which directly computes W[i, j]. We assume the number of
available epochs in T[i, j] is K. We sort the K epochs in non-
increasing order of the channel factors, i.e., 1/h; < 1/hy <

- < 1/hy. As the water is gradually filled in, the water level
reaches values in {1/h;,i = 1,2, ..., K}, one by one. When
the water level w equals 1/hy, the total data transmitted with
current water level is B = Zk<q Ixlog(why). If B < Bli, jl,
then we must have the water level W[i, j] > w, and otherwise,
WI[i, j1 < w. By computing B for each (1/h,),g=1,2,...,K,
we can determine a g such that 1/h; < WI[i,jl < 1/hgq1.
So, by solving Bl[i,j] = ZZ;: Iy log(wyhy), we can compute
wy = WIi, j] directly.

C. Highest-Water-Level Interval First Policy

To compute the optimal water level w°P', the HIF policy
works in iteration. In each iteration, the water level is com-
puted for every data interval. Amongst all the data intervals,
we locate the one with the highest water level. Let it be I[i, j]
and its water level be W[i, j]. Then, the HIF policy transmits
all packets from S[i, j] in the epochs T, j]. It will be proved

4417

Algorithm 3: HIF

while exist some tasks not yet assigned epochs do
foreach data interval I[i,jl, 1 <i,j <n do
Identify the task set S[i, jI;
Compute the data load B[i, j];
Determine the available epochs TTi, j];
Compute the water level W[i, j] by
Algorithm INTERVALWATERLEVEL;
end
Locate the highest water level interval I[i, j];
Assign water level W[i, j] to epochs in TTi, jl;
10 Mark all the epochs in T, j] as unavailable;
1 Mark all the tasks of S[i, j] as assigned epoch;
12 end

A U AR W N -

e 3

that any optimal water level should use W[i, j] in data interval
I[i, j], and exactly B[i, j] data from S[i, j] can be delivered in
I[i, j]. We then update the available packet set by subtracting
S[i, j1 and update the available epoch set by subtracting 7', j].
After such update, the same problem appears and we again
locate the highest water level interval by the same procedure.
Details are presented in Algorithm 3.

We use the example in Fig. 5 to illustrate the execution of
Algorithm 3. In the first while loop, after the foreach loop
computes the water level for every possible interval, I[3, 2]
is located as the highest water level interval, and task T3 is
assigned with epochs 7-9, which use the same water level
WI[3, 2]. After updates, the remain task set is {7, T, T4} and
the available epochs are {1 — 6, 10 — 13}. In the second while
loop, interval I[1, 3] is located as the highest water level, and
task 77 and T, are assigned with epochs 1-6, 10, and 11,
where the water level W1, 3] is used in epochs 1-4 and 10.
After updates, the remain task set is {74} and the available
epochs are {12, 13}. In the third while loop, interval I[4, 4]
is located as the highest water level, and task 7, is assigned
with epochs 12 and 13, where the water level is defined in
epoch 13.

The correctness of the HIF policy depends on whether using
WIi, j] as the water level in data interval I[i, j] is optimal. If
this is true for the first iteration, then, by the recursive native
of HIF policy, we can conclude that it is optimal in every
iteration. The following theorem states that this is true for the
first iteration.

Theorem 1: Given a set of tasks T = {T;|l < i < n},
T; = (a;, b;, d;, ci, e;), among all the data intervals, if the high-
est water level interval is I[i, j], then the following statements
must be true.

1) Any optimal transmission policy must assign water level

Wi, j] to every epoch of I[i, j].
2) Any optimal transmission policy must transmit exactly
the packets S[i, j] in I[i, j].
Proof: See Appendix E. |

All the water levels computed by the HIF policy are optimal
by the recursive native of HIF policy.

After the optimal water levels are calculated, the trans-
mission power is determined, hence the packet transmission

4418

schedule can be uniquely determined by applying EDF rule to
select packets from the data queue to transmit.

V. SIMULATIONS

In our simulation, we investigate the performance of the
two proposed algorithms involving break-down, build-up, and
HIF. Since no other existing work studies the same problem,
we compare them against the optimal results when the input
task set size is small and against a simple intuitive baseline
algorithm when the input set is large.

Since the optimal offloading task set must be one of the
subset of the entire task set. When the entire task set is
small, we can use brute force to enumerate every possible
combination subset and compute the total IoT device energy
consumption. However, when the task set size becomes larger,
the number of combinations grows exponentially, hence the
brute force method fails to compute the optimal solution
within a reasonable time. We therefore propose a baseline
method, which randomly selects npaseline cOmbinations from all
possible subsets, and output the best solution amongst them.

A. Simulation Settings

We assume a total of n tasks are generated whose input
data size follows an uniform distribution U(1, 50) and code
block size follows an uniform distribution U(1, 4). The code
block receiving energy consumption parameter « is set to 1.
The local execution energy of the code is assumed to follow
an uniform distribution U(0, 2). The task arrivals are assumed
to following Poisson process. The average interarrival time
is set to be 1. The task data transmission delay is assumed
to follow an uniform distribution U(0, 2 * d), where d is the
average delay constraint. We assume the wireless channel for
transmit data from the device to the server has a dynamic
random channel quality, whose channel state (fading factor)
follows an uniform distribution U(0.05, 2 % & — 0.05), where
h is the average channel fading value.

In our simulations, the default setting is the fading factor
h = 0.25, the average delay constraint d = 4 and the packet
number n = 5 for brute force method. When the task number
is small, i.e., n = 5, break-down and build-up algorithms are
compared against the brute force optimal solution, and param-
eter h and d are changed one at a time to evaluate their impact
on algorithm performance. When the task number is large, i.e.,
n changes from 8 to 50, the two algorithms are compared to the
baseline method to evaluate the algorithm performance. The
execution time is measured on an Apple iMac computer with a
4-core Intel i5 processor working at 3.2 GHz, and the system
memory is 16 GB. We set npaseline = 100 for the baseline
algorithm.

Each point shown in figures of this section is the mean
value of simulation results from 50 random instances. In each
instance, a total of n packets are randomly generated according
to the above settings.

B. Simulation Results

The impact of offloading decisions are shown in Table II,
where three types of energy consumption are compared, i.e.,

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

TABLE II
ENERGY CONSUMPTIONS COMPARISON

[index] 1 2 3 4 5 6 [avg |
remote ex. 172.1 2349 1194 1379 183.1 87.5 | 175.6
local ex. 1140 1150 119.0 143.0 192.0 175.0 | 1348
offloading 74.5 84.0 76.1 643 125.6 50.6 80.9
1120
16 -
1al R 1110

w12t

time (s
\V
¢
|
|
|
Q@
||
|/
|/
|/
=
o
ratio (%)

0.8

—=&— Break-Down running time (left)
—&— Break-Down to optimal ratio (right)
0.4 80

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Control ratio for task# switching (p)

0.6 -

Fig. 6. Tradeoff between algorithm execution time and output accuracy. The
more time sent (iteration), the more accurate the results.

when all task executed remote, all task executed locally and
when tasks are optimally selected to offload. We generate 50
random instances, and the energy consumptions for the first six
instances are presented in the first six columns, while the aver-
age energy consumptions of all instances are presented in the
last column. We can see from Table II that in every instance,
the energy for both remote and local execution is higher than
that for selective offloading. On average, the proposed offload-
ing method reduces over 40.0% energy off the traditional TC
block streaming method, and reduces over 53.9% energy off
the remotely executing method.

In Fig. 6, we consider the break-down heuristic, in which
every task is initially included in the offloading task set and the
loading task set is empty. Task-switching ratio control param-
eter p controls how many tasks can be switched in a single
iteration. We can see that the running time curve declines as
p grows greater, while the accuracy curve (represented by the
break-down to optimal ratio in terms of energy consumption)
rises as p grows. This is because, when p is small, less tasks
are selected and switched in each iteration, resulting in more
iterations to finish the algorithm which slows down the algo-
rithm. By the HIF algorithm designed in Section IV, the less
tasks switched in one iteration, the more accurate its energy is
estimated by line 6 of Algorithm 1. When p is large, more tasks
can be switched in one single iteration, which leads to a fewer
loops before algorithm ends. However, the energy estimate
may be inaccurate since mistakes occur and the accuracy of
the algorithm drops. Therefore, in simulations, we set p = 0.5
as default value to find a good tradeoff.

In Fig. 7, the energy consumptions of our two proposed
algorithms are compared to either the optimal solution or the
baseline method.

From Fig. 7(a), it can be observed that under various
data transmission delay constraints, both our proposed algo-
rithms, i.e., the break-down and build-up, performance well.
Their curves are close to the optimal solution, indicting
they are efficient in making offloading decision and schedule

SHAN et al.: OFFLOADING DELAY CONSTRAINED TC TASKS WITH ENERGY-EFFICIENT TRANSMISSION POWER SCHEDULING 4419
100fF § i i i i i 90 1400
)/)\V
—— Break-Down 1200 —i&— baseline
5 80 | 5 —— v\ s 80 Builld—Up 5 +Brgak—Down
"é_ S é i —a&— optimal .é_ 1000 Build-Up
3 60F = 3
g % 70l é 800
o
> 40t Q Q 600
2 o =
2 —— Break-Down @ 60] 400
w20+ Build-Up w w
—o&— optimal 200 -
oL - -)))) 50)))))) .))))
25 3 35 4 45 5 55 0.1 0.15 0.2 0.25 0.3 0.35 0.4 10 20 30 40 50
Average Delay Constraint d Average Channel States h Nubmer of Jobs n
(a) (b) (©)
Fig. 7. Evaluation of the energy consumption by our two proposed algorithm. In (a) and (b), the optimal value is computed by brute force search. In (c), a

baseline value is depicted.

energy-efficient data transmission. Meanwhile, we notice that
energy consumption decreases as the average delay constraint
increases for all three curves. This is because the longer a
delay constraint is, the less urgent the task data transmission
is, which implies that lower transmission rate can be used to
deliver it and therefore consumes less energy.

It can be conclude from Fig. 7(b) that both break-down
and build-up are efficient in performance under various chan-
nel state conditions. Note that the three curves descend as the
fading factor enlarges. This is because, generally, higher fading
factor means better channel quality, so lower transmission
power and less energy consumption.

In Fig. 7(c), we change the task number, from 8 to 50 with
step 7, to evaluate its impact on algorithm performance. Since
the brute force method no longer computes the optimal solu-
tion at such input size, we instead use the baseline method
for comparison. We can see that under different task num-
bers, both algorithms performance better than the baseline
method. And the gap grows as the task increases, indicting
our proposed algorithms have advantage when large number
of packets are in consideration. The curves show rising trends
with the increase of packet number, since more packets means
more data to transfer, more energy needs to be consumed.

VI. RELATED WORK

As a new paradigm of modern computing, TC has been
proposed and studied in recent years. Researchers study
how to improve TC from various aspects, e.g., code execu-
tion schemes [1]-[3], cache storage frameworks [4]-[6], and
resource managements [20], [21]. Peng et al. [1] proposed
a block-streaming APP execution scheme, which splits the
codes of a whole service into numerous functional blocks
and loads them on demand. Ren et al. [2] proposed a scal-
able IoT architecture that combines edge computing and TC,
in which service provisioning flow is from edge servers to
IoT devices, and data processing flow is in reverse direc-
tion. Zhang et al. [3] further reduced the service delay by
proactively streaming blocks before the requests. Besides the
above TC improvement from code execution, other improve-
ments are from cache storage. Zhang et al. [4] designed a
multilevel cache scheme to speed up the code block access.
Liu et al. [5] proposed a simulation framework to evaluate
a particular cache scheme. Jin er al. [6] used cooperative

storage and D2D data sharing to reduce the code access-
ing delay. Other works focus on resource management which
can be incorporated into TC. Zhang et al. [20] investigated
a new resource allocation algorithm to manage both energy
and spectrum resource. Zhang et al. [21] studied a utility-
optimal resource management and allocation algorithm for
energy harvesting IoT devices.

Tremendous research efforts have been made to design
delay-constrained energy-efficient power scheduling algo-
rithms with or without the consideration of dynamic
channel states, namely, time-varying fading factors.
Prabhakar et al. [10] and Uysal-Biyikoglu et al. [11]
are among the first group of researchers who formulated
the delay-constrained energy efficient packet transmission
problem. They considered the case where all packets have a
common deadline and the arrival time and size of each packet
are known in prior to the scheduling. An optimal scheduling
algorithm is presented to guarantee to deliver all packets
before the deadline with minimum energy consumption.
Zafer and Modiano [14], [15] thus presented an optimal
algorithm that allows each packet to have an individual
deadline. They proposed the cumulative curves to track
packet arrivals and packet departures. The key observation is
that a feasible departure curve always lies between the arrival
curve and minimum departure curve. However, they still need
to make an undesirable assumption that a packet arriving
earlier carries an earlier deadline, which will be referred to
as aligned deadlines in this paper. Shan et al. [19] solved the
most general case in which arbitrary deadlines are allowed.
The common deadline model and the aligned deadline model
are both special cases of this more general model. They arose
the concept of data interval and propose the densest interval
first policy to control the transmission power and schedule
the transmission rate that minimize the energy consumption.

These above papers investigate over a static channel. In
the real world, a wireless communication channel is usu-
ally a time-varying fading channel. El Gamal et al. [9] and
Uysal-Biyikoglu and El Gamal [12] proposed the MoveRight
and FlowRight algorithms that solve this problem when
packets have aligned deadlines. The main idea of the
MoveRight/FlowRight algorithm is to iteratively calculate the
local optimal solution for every two adjacent time-slots, and
this iterative local optimization is proved to lead to the globally
optimum solution. However, such an iteration-based algorithm

4420

has a high computational complexity, where hundreds of
seconds may be required in actual computation [9], [12].
Moreover, it can not handle the more general arbitrary deadline
model.

From the above discuss, we can conclude that the energy
efficient power scheduling problem with arbitrary individual
deadline guarantee over a fading channel is still open.

VII. CONCLUSION

This paper has formulated the offloading min-E problem,
and decomposed it into the offloading decision problem and
the transmission power scheduling problem. Two heuristic
approaches, namely break-down and build-up were presented
to make the offloading decision for the first problem. Although
the transmission power scheduling problem is a longstand-
ing open question, we proposed the HIF policy to optimally
solved this problem after introducing some optimality prop-
erties for it. The HIF policy was designed based on novel
notations such as date interval and water level. Simulations
have shown these proposed algorithms are efficient through
extensive simulations.

In the future, we plan to extend this paper that considers
only one IoT device and one TC server to a more complex
scenario where multiple IoT devices are connected to a TC
Server.

APPENDIX A
INTRODUCTION OF WATER LEVEL

We use a toy example to introduce the water level that
minimizes the energy consumption with delay constraint. This
analysis is inspired by the well-known water-filling power allo-
cation method which aims to maximize the throughput [22].

Given one task T = {c, b, 0, 2} with arrival time a = 0,
deadline d = 2. Assume the fading factor is 41 in [0, 1) and
hy in [1,2). Hence, there are three events and two epochs.
We want to compute the optimal transmission power p; and
p> for the two epochs, such that the total consumed energy is
minimized

min. pi +p2 (7
s.t. log(1 + hip1) +log(1 + hypa) = b (8)
pi=0,i=12)

By the KKT conditions for convex program [23], we asso-

ciate Lagrangian multiplier w with constraint function (8) and

multiplier u; with (9). Then we have the following Lagrangian

function [23]:

L(p, w,) = p1+p2 — w(log(l 4 hip1) +log(l + hap2) —b)
—H1p1 — [2pa.

By the necessary and sufficient KKT conditions, we have
wipi = 0 and (0L/9p;) = 0 for i = 1, 2. Thus,

w 1 1\
;= _—= _— , :1,2
pi I—ui h (W hi) l

where the second equation is because p;p; = 0 which means at
least one of u; and p; must be 0. This implies that p;+1/h; =

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

p2 + 1/hy when p; > 0 and pp > 0. We therefore define
p: + 1/h; as the water level.

APPENDIX B
PROOF OF LEMMA 1
Assume w; = p; + (1/h;) and w; = p; + (1/h;), where h;
and h; are channel fading factors, p; and p; are transmission
powers, so p; = w; — (1/h;) and p; = w; — (1/h;). Therefore,
the energy consumption E of the two epochs is calculated as

E = pili + pjly = wili + wilj = Li/hi — i/hj. (10)
The data transmission B is
B =ril; + rjlj = l;log hijw; + lj log thj. (11D

There are two cases to improve the schedule, i.e., consume E
while transmit more than B, or transmit B while consume less
than E. We consider the formal case by finding a common
water level w for both epochs and show the data transmission
is increased. The other case is similar and left to the readers.

The common w can be computed as follows:

w = il E Wil (12)
I + lj
Now, replace both w; and w; with w in two epochs. It is easy
to check that the consumed energy does not change after the
replacement. But the new transmitted data B’ is changed to

B’ = [;log hjw + I;log hjw.
The difference is
AB=B—-FB
= lilogw; + ljlogw; — (Ii + I;) log w

l l
=+ lz)(—logwl 42 log wy

1
Lh+1D h+b
o+)
— 10 w w:
N+ T+

The last inequality follows from the fact that the function log
is a concave function.

As a conclusion, the water levels of any two epochs can be
equalized to transmit more with the same amount of energy
consumption as long as the casuality constraints allow.

<0.

APPENDIX C
PROOF OF LEMMA 2

We prove the first half, i.e., if w; < w; then there is an
arrival point in between, and the second half is symamtctic.

In the seek of contradiction, we assume there is no arrival
point between epochs i and j. Then, the water levels of the
two epochs can be equalized by moving a certain amount
of data transmitted in epochs j to i. According to Lemma 1,
such equalization improves on the original schedule. We now
show such equalization satisfies the casuality constraints. First,
every packet is finished before its deadline, because more data
is transmitted in an earlier epoch. Second, no packet will be
transmitted before its arrival time, because no packet is moved
forward across an arrival point. This conflicts the optimality
of the policy.

SHAN et al.: OFFLOADING DELAY CONSTRAINED TC TASKS WITH ENERGY-EFFICIENT TRANSMISSION POWER SCHEDULING

APPENDIX D
PROOF OF LEMMA 3

We prove (1) by contradiction. Assume, in w°Pt, two water
levels W?p " < wP are used in epochs i and j which are con-
tained inside set H — H' of task Ty. Then, the two water
levels can be equalized by moving some amount of pack-
ets from epochs j to i, since between epochs transmits only
data from T;. By doing this, the optimal water level wP' is
improved according to Lemma 1, which is a contradiction.
Then, we prove (2). By contradiction, we assume w°P' is lower
than w in the epoch x, where epoch x is contained inside in H'.
Now consider epoch y in H—H’, since bothx € Hand y € H,
we can always move some amount of data transmission from
epoch y to x without violet the causality constraints. Since the
equalization between x and y improves w°P!, contradicting its
optimality, therefore (2) is true as well.

APPENDIX E
PROOF OF THEOREM 1

We prove (1) by contradiction. Assume w' is the optimal
water level used in I[i, j] and w°P' £ W/[i,] in some epochs
inside [a;, dqj). There must be an epoch [eg, ex+1) < [a;, dqj)
where the optimal water level w°P' > WI[i,j]. Because if
wOPt < Wi, j] for entire I[i, j], then fle[a,‘,dqj) log(w;’Ptht) dr <

fte[a_ dq)log(W[i, Jjlhy) dt, which implies some packets must
i-4q;

miss their deadlines. Therefore, w°P' > Wi, j] holds in epoch
lek, ex+1) C [ai, dq_/). We then extend this epoch [eg, ex+1) to
the longest time interval [e,, e,) where every epoch has their
wOPt > Wi, j]. Note, [a;, dg;) may not contain the time interval
[ey, e)) or vice versa. Thus, the water level increases/decreases
at e,/e,. Otherwise, we can extent the [e,, e,) to be a larger
time interval. Note, it is possible that water level is undefined
in [ey, e,) or in [e,, e,y), for some ' < u and V' > v.

By Lemma 2, ¢, is an arrival point, or an arrival point is
inside [e,/, e,), which is assumed to be a,. Similarly, a dead-
line point dqq is at e, or inside [e,, e,r). Thus, there must exist
a data interval [ap, d, ’), and its water level is no higher than
WIi, j], because the I[i, j] is the highest water level interval.
However, we have w°P' > W[i, j] for every epoch in [e,, e,)
and w°P' > WI[i, j] for epoch [ex, ext1) C [eu, ey)

/ 1og((w§’l"h,) dr = / log w?pth,) dr
te [ap,dqq) teley,ey)

> / log(W[i.]h) d
teley,ey)

= / log(W/[i, j]h) d
te[a,,,dqq

t> B[p, q].

Thus, the optimal water level wP! transmits more data than the

B[p, ¢] in the data interval I[p, q]. We therefore conclude that
there must be a packet P, not belonging to S[i, j] is transmitted
in the data interval I[p, g]. Packet Py either arrives before a, or
has a deadline after d,, ” This contradicts Lemma 3. Therefore,
WIi, j] is the optimal water level for every epoch in I[i, j]. The
statement (1) is proved.

4421

According to Algorithm 2, the water level W[i, j] transmits
exactly B[i,j] data in I[i,j], and all packets in S[i,j] have
arrival times and deadlines inside I[i,j]. Hence, packets in
S[i, j] must be transmitted in I[i, j].

REFERENCES

[1] X. Peng et al., “BOAT: A block-streaming app execution scheme
for lightweight IoT devices,” IEEE Internet Things J., vol. 5, no. 3,
pp. 1816-1829, Jun. 2018.

[2] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
IoT architecture based on transparent computing,” IEEE Netw., vol. 31,
no. 5, pp. 96-105, Aug. 2017.

[3] D. Zhang, R. Shen, J. Ren, and Y. Zhang, “Delay-optimal proac-
tive service framework for block-stream as a service,” IEEE
Wireless Commun. Lett., vol. 7, no. 4, pp. 598-601, Aug. 2018,
doi: 10.1109/LWC.2018.2799935.

[4] D. Zhang, Y. Zhou, and Y. Zhang, “A multi-level cache framework for
remote resource access in transparent computing,” IEEE Netw., vol. 32,
no. 1, pp. 140-145, Jan./Feb. 2018.

[51 J. Liu, Y. Zhou, and D. Zhang, “TranSim: A simulation framework for
cache-enabled transparent computing systems,” IEEE Trans. Comput.,
vol. 65, no. 10, pp. 3171-3183, Oct. 2016.

[6] J. Jin, J. Luo, Y. Li, and R. Xiong, “COAST: A cooperative storage
framework for mobile transparent computing using device-to-device data
sharing,” IEEE Netw., vol. 32, no. 1, pp. 133-139, Jan./Feb. 2018.

[71 R. W. Ahmad et al., “Enhancement and assessment of a code-analysis-
based energy estimation framework,” IEEE Syst. J., to be published,
doi: 10.1109/JSYST.2018.2823733.

[8] P. Serrano, A. Garcia-Saavedra, G. Bianchi, A. Banchs, and A. Azcorra,
“Per-frame energy consumption in 802.11 devices and its implication
on modeling and design,” IEEE/ACM Trans. Netw., vol. 23, no. 4,
pp. 1243-1256, Aug. 2015.

[9]1 A. El Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi,

“Energy-efficient scheduling of packet transmissions over wireless

networks,” in Proc. IEEE INFOCOM, Jun. 2002, pp. 1773-1782.

B. Prabhakar, E. U. Biyikoglu, and A. El Gamal, “Energy-efficient trans-

mission over a wireless link via lazy packet scheduling,” in Proc. IEEE

INFOCOM, vol. 1, Apr. 2001, pp. 386-394.

[11] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Energy-efficient

packet transmission over a wireless link,” IEEE/ACM Trans. Netw.,

vol. 10, no. 4, pp. 478-499, Aug. 2002.

E. Uysal-Biyikoglu and A. El Gamal, “On adaptive transmission for

energy efficiency in wireless data networks,” IEEE Trans. Inf. Theory,

vol. 50, no. 12, pp. 3081-3094, Dec. 2004.

W. Chen, M. J. Neely, and U. Mitra, “Energy efficient scheduling

with individual packet delay constraints,” in Proc. IEEE INFOCOM,

May 2007, pp. 1136-1144.

M. A. Zafer and E. Modiano, “A Calculus approach to minimum energy

transmission policies with quality of service guarantees,” in Proc. IEEE

INFOCOM, vol. 1, Mar. 2005, pp. 548-559.

M. A. Zafer and E. Modiano, “A calculus approach to energy-efficient

data transmission with quality-of-service constraints,” IEEE/ACM Trans.

Netw., vol. 17, no. 3, pp. 898-911, Jun. 2009.

A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission schedul-

ing over a fading channel with energy and deadline constraints,” IEEE

Trans. Wireless Commun., vol. 5, no. 3, pp. 630641, Mar. 2006.

[17] M. Zafer and E. Modiano, “Minimum energy transmission over a wire-

less channel with deadline and power constraints,” /EEE Trans. Autom.

Control, vol. 54, no. 12, pp. 2841-2852, Dec. 20009.

M. Zafer and E. Modiano, “Delay-constrained energy efficient data

transmission over a wireless fading channel,” in Proc. Inf. Theory Appl.

Workshop, 2007, pp. 289-298.

F. Shan, J. Luo, and X. Shen, “Optimal energy efficient packet schedul-

ing with arbitrary individual deadline guarantee,” Comput. Netw., vol. 75,

no. 2014, pp. 351-366. Dec. 2014

D. Zhang et al., “Two time-scale resource management for green

Internet of Things networks,” IEEE Internet Things J., to be published,

doi: 10.1109/JI0T.2018.2842766.

D. Zhang et al., “Utility-optimal resource management and allocation

algorithm for energy harvesting cognitive radio sensor networks,” IEEE

J. Sel. Areas Commun., vol. 34, no. 12, pp. 3552-3565, Dec. 2016.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication.

Cambridge, U.K.: Cambridge Univ. Press, 2005.

S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,

U.K.: Cambridge Univ. Press, 2004.

[10]

[12]

[13]

[14]

[15]

[16]

(18]

[19]

[20]

[21]

[22]

[23]

http://dx.doi.org/10.1109/LWC.2018.2799935
http://dx.doi.org/10.1109/JSYST.2018.2823733
http://dx.doi.org/10.1109/JIOT.2018.2842766

4422

Feng Shan (M’17) received the Ph.D. degree
in computer science from Southeast University,
Nanjing, China, in 2015.

He is currently an Assistant Professor with
the School of Computer Science and Engineering,
Southeast University. He was a Visiting Scholar
with the School of Computing and Engineering,
University of Missouri-Kansas City, Kansas City,
MO, USA, from 2010 to 2012. His current research
interests include energy harvesting, wireless power
transfer, swarm intelligence, and algorithm design
and analysis.

Junzhou Luo (M’07) received the B.S. degree
in applied mathematics and the M.S. and Ph.D.
degrees in computer network from Southeast
University, Nanjing, China, in 1982, 1992, and 2000,
respectively.

He is a Full Professor with the School of
Computer Science and Engineering, Southeast
University. His current research interests include
next generation network architecture, network secu-
rity, cloud computing, and wireless LANs.

Prof. Luo is the Chair of the ACM Special

Interest Group on Data Communication China, the Co-Chair of the Technical
Committee on Computer Supported Cooperative Work in Design of the IEEE
Systems, Man, and Cybernetics Society, and a member of the IEEE Computer

Society and ACM.

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

£ A

Jiahui Jin (M’17) received the Ph.D. degree in com-
puter science from Southeast University, Nanjing,
China, in 2015.

He is an Assistant Professor with the School
of Computer Science and Engineering, Southeast
University. He had been a Visiting Ph.D. Student
with the University of Massachusetts at Amherst,
Ambherst, MA, USA, from 2012 to 2014. His
current research interests include large-scale data
processing, distributed systems, and parallel task
scheduling.

Weiwei Wu (M’14) received the B.Sc. degree in
computer science from the South China University
of Technology, Guangzhou, China, in 2006, and the
Ph.D. degree in computer science from the City
University of Hong Kong, Hong Kong, and the
University of Science and Technology of China,
Hefei, China, in 2011.

He was the Post-Doctoral Researcher with
the Mathematical Division, Nanyang Technological
University, Singapore, in 2012. He is currently
an Associate Professor with Southeast University,

Nanjing, China. His current research interests include optimizations and algo-
rithm analysis, wireless communications, crowdsourcing, cloud computing,
reinforcement learning, game theory, and network economics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

