
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

1

Offloading Delay Constrained Transparent
Computing Tasks with Energy-Efficient

Transmission Power Scheduling in Wireless IoT
Environment

Feng Shan, Member, IEEE, Junzhou Luo, Member, IEEE, Jiahui Jin, Member, IEEE, Weiwei Wu, Member, IEEE,

Abstract—Billions of lightweight Internet of Things (IoT)
devices have been deployed for various applications nowadays.
Most of them first collect interested data and then process
them in some degree according to application requirements.
Transparent Computing (TC) is a promising technique that
makes such lightweight devices suitable to process even large-
size applications. The advantage of TC is to separate code
storage from its execution, allowing IoT devices to load code
blocks from nearby TC storage server on demand. Distinct
from existing work, this paper allows the TC IoT devices to
offload some tasks to servers, since wireless IoT devices are
usually powered by batteries, having limited energy resources.
If a task is offloaded, a challenging problem is that its input
data collected by the IoT device must be transferred as well,
which incurs additional transmission time and energy. This paper
proposes a two-step approach aiming at minimizing the energy
consumption of the IoT device while satisfies the delay constraint.
This approach first studies the offloading decision problem that
determines for each task whether to offload task data or load
task code blocks, while loading code indicates code receiving and
executing energy cost. Second, the transmission power scheduling
problem is investigated to further reduce offloading energy for a
given delay constrained offloading task set. Heuristic decision
making algorithms and optimal power scheduling algorithm
are proposed respectively. Such two-step approach is shown by
extensive simulation to be near optimal for the original problem
thanks to the optimal design of the power scheduling algorithm.

I. INTRODUCTION

With the popularity of the Internet of Things (IoT), billions
of lightweight IoT devices such as smart city monitors, smart
home devices, and industrial sensors, are deployed. Most
of these IoT devices collect interested data from deployed

Manuscript received Xxx xx, 2018; revised Xxxx x, 2018; accepted
Xxxxxxxx xx, 2018. This work was supported by the National Key Research
and Development Program of China Grant 2017YFB1003000, National Natu-
ral Science Foundation of China Grants 61320106007, 61632008, 61702097,
61702096, 61602112, and 61672154, Jiangsu Provincial Natural Science
Foundation Grants BK20170689 and BK20160695, Aeronautical Science
Foundation of China Grant 2017ZC69011, Jiangsu Provincial Key Laboratory
of Network and Information Security Grant BM2003201, the Fundamental
Research Funds for the Central Universities Grant 2242018K41047, and Key
Laboratory of Computer Network and Information Integration of the Ministry
of Education of China Grant 93K-9.

F. Shan, J. Luo, J. Jin and W. Wu are with School of Computer Science
and Engineering, Southeast University, Nanjing 211189, China (Emails:
fshanfeng,jluo,jjin,weiweiwug@seu.edu.cn).

Copyright (c) 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

!""#$%&
'$(

)*+

,(-./0#(%1+

2(%&#/34.%5'$()
6&'&/,(##.%'.-/
78/9(: 6.;$%.

<.=('./34.%5'$()/
>:&+1/?@@#(&-$)AB

C$D.#.++/
E.'F(D1

:,/9(: 6.;$%. :,/9(: 6.;$%.

:,/G.D;.D

Fig. 1. A typical TC IoT device loads application code blocks from a nearby
TC storage server and performs local execution on demand. Since IoT devices
are usually powered by a battery, having limited energy resources. We hence
consider one more option: offloading tasks to the server for remote execution.
However, if a task is offloaded, its input data collected by the device must be
transferred as well, which incurs additional transmission time and energy.

environment and process them in some degree according to
application requirements. Transparent Computing (TC) is an
efficient way to make such lightweight devices more powerful,
suitable, and secure for processing and executing even large-
size applications. The core of TC is to separate code storage
from its execution, allowing IoT devices to load code blocks
from nearby TC storage servers on demand [1]–[6].

A typical TC IoT device loads application code blocks and
performs local execution on demand in order to guarantee
low response time for delay sensitive applications. Since most
IoT devices are battery powered, they are usually limited in
resources, such as low energy supply. We hence allow one
more option for IoT devices, i.e., to select and offload a portion
of tasks to TC servers for remote execution, because these TC
storage servers usually have more computation and energy
resources. However, if a task is offloaded to the servers, its
collected data as input must be delivered to the servers as
well since these tasks are to process these data collected by
IoT devices. This will incur additional transmission time and
energy. Such scenario is illustrated in Fig. 1.

Assume each task data transmission has its own completion
delay constraint. Then, an IoT device has two options in
executing a task: it either 1) receives task code blocks from
the TC server to execute locally, referred as loading (task)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

2

code blocks, or 2) sends the collected data to the TC server to
execute remotely, referred as offloading (task) data. In order
to minimize the energy consumption and satisfy the delay
constraint, this paper proposes a two-step approach. We first
study the offloading decision problem and then investigate the
transmission power scheduling problem.

The offloading decision problem balances energy consump-
tions between offloading data and loading code. An intuition
behind is, some tasks may have large data amount and tight
deadlines to offload but small code block to load and execute,
while other tasks may have small data amount and loose
deadlines to offload but large code block to load and execute.
Hence choose the right set of task set to offload/load is
important to minimize total energy consumption for an IoT
device to transmit data, receive and execute code.

Once the loading task set is determined, the local execution
code blocks are determined. We hence assume the local
execution energy of each task can be estimated by code
analysis [7]. According to previous research [8], for a task,
the receiving (code loading) energy is proportional to the code
block size, while the transmitting (data offloading) energy is
related to not only the data size but also its transmission delay
and the channel status.

The transmission power scheduling problem focuses on
minimizing transmission energy for a given set of tasks. By
Shannon-Hartley Theorem on wireless channel capacity, a
slower transmission rate is preferred to save energy, while a
higher rate is preferred to shorten transmission delay. More-
over the worse channel quality/state, the higher transmission
power is needed to reach a fixed data transmission rate; while
the better channel state, the lower power to reach the fixed
rate. Hence, an optimal transmission rate considers not only
the data amount, deadline of each offloading task, but also the
wireless channel states.

Such two problems form a two-step approach towards
minimizing IoT device energy consumption. We can see that
the offloading decision made in the first step will directly affect
the energy consumption in the second step. Inappropriate
offloading task set (e.g., with tight data transmission deadlines
when channel quality is low) will increase the transmission
energy even if optimal power scheduling can be found for this
task set. Such connection must carefully managed in algorithm
designs.

The contributions of this paper are summarized as follows.
� We propose to offload delay constrained TC tasks from

the IoT device to the TC storage server to save IoT
device energy. We formulate this problem and introduce
a two-step approach via two sub-problems: the offloading
decision problem and the transmission power scheduling
problem to reduce energy consumption and satisfy delay
constraint.

� We analysis the relationship between the two sub-
problems. For the first offloading decision problem, we
present two heuristic algorithms to iteratively solve it
from two different directions, i.e., the break-down ap-
proach and the building-up approach.

� For the second transmission power schedule problem
with a given offload task set, it is discovered to be

a longstanding open question. We design the Highest-
water-level Interval First (HIF) algorithm to solve it
optimally in which novel concepts, namely data interval
and its water level, are introduced. By iteratively locating
the data interval with the highest water level, the HIF
policy computes the optimal power schedule.

� The proposed two-step approach is shown by extensive
simulation to be near optimal for the original problem.
These proposed algorithms are also compared to a simple
baseline method.

The paper is organized as follows. Section II introduces the
system model and defines the problem. Section III proposes
to decompose this problem and discusses two heuristic algo-
rithms for making offloading decision. Section IV presents the
HIF algorithm that optimally solves the transmission power
scheduling problem. The simulation results are discussed in
Section V. Related works are given in Section VI. Section VII
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a TC system consisting of a lightweight
wireless IoT device, a storage cache server, and a single user
point-to-point wireless fading channel between the device and
the server. Let T = {T1, T2, . . . , Tn} be a set of n tasks
generated at the IoT device. For any task Ti, i = 1, 2, . . . , n,
we use arrival time (event) ai to denote the time that it is
generated and ready for processing. Since the IoT device may
generate a task at any time, we sort all the tasks by their arrival
times such that a1 ≤ a2 ≤ . . . ≤ an. The task code block
size is assumed to be ci. We assume the execution energy
on an IoT device can be estimated by code analysis, and
is denoted as ei. Let the input data size be bi and assume
its data transmission deadline (event) is di (> ai). Note that
such deadline can be easy obtained from the task completion
deadline since its execution time on a powerful server is
predictable. We assume arbitrary deadline for task Ti, which
is the most generate model in the literature. If we sort the
deadlines such that dq1

≤ dq2
≤ · · · ≤ dqn , then sequence

q1, q2, . . . , qn may be any permutation of 1, 2, . . . , n. Hence, a
task can be represented by a quintuple, Ti = (ai, bi, di, ci, ei),
where ai is the task generate (arrive) time, bi and di is the
input data size and its transmission deadline respectively, ci
and ei is the code block size and its local execution energy
respectively.

The execution of a task Ti requires both code blocks
originally located at the server and the input data collected and
stored at the IoT device. A task Ti has two execution options,
either 1) locally at the IoT device which requires its code block
with size ci to be delivered from the server and consumes ei
execution energy, referred as loading (task) code blocks, or
2) remotely at the server which means a total of bi collected
data must be transferred from the device, referred as offloading
(task) data. Such system model is illustrated in Fig. 2. For a
data offloading task Ti, its data transmission can start only
after its arrival time ai and must finish before its deadline di.
Such constraints are called the causality constraint [9].

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

3

TC/edge
Server

TC IoT
Device

Collected Data
size bi
deadline di

Code Blocks
size ci

energy ei

arrive/generate time ai

Fig. 2. There is an IoT device and a TC server in our system. Each task
Ti = (ai; bi; di; ci; ei) executes either locally at the IoT device or remotely
at the server. Task Ti is generated (arrives) at time ai, and local execution
requires its code block with size ci to be loaded (received) and the local
execution energy is ei; while remote execution requires a total of bi collected
data must be offloaded (transmitted) to the server before deadline di.

Define the offloading decision vector x, whose elements are
binary variables,

xi = {0, 1}, ∀i ∈ [1, n]. (1)

where xi = 0 indicates that task Ti is executed locally at the
IoT device (code loading task) and xi = 1 means that it is
executed remotely at the server (data offloading task).

Our focus is the energy consumption of the IoT device,
which consists of three major parts, i.e., the data transmitting
energy for data offloading tasks, the code block receiving
and executing energy. According to previous works [8], the
receiving energy Ei for task Ti is proportional to the code
block size ci. Hence, we have

Ei = αci, i : xi = 0, (2)

where α is a constant factor. In the following, we introduce
the transmitting energy.

Following previous works [9]–[18], we assume the wireless
channel for data transmission has a dynamic channel quality,
represented by a time-vary channel states, or equivalently, the
fading factor. Although the channel quality varies as time
goes by, we assume it is constant in a small time interval.
Assume the channel quality changes only at these m time
points, f1, f2, · · · , fm in the interested time duration [a1, dqn].
Such time points are also called fading changing event points.
Now, we have n arrivals, n deadlines and m fading changes
in consideration. We say there is an event sequence consisting
of 2n+m events, including arrival events, deadline events and
fading changing events, see the time axis of Fig. 4 to find an
example sequence. For presentation clarity, we assume no two
events occur at the same time. If it indeed happens, we can
treat them as occur in sequence with very small interval, and
then our proposed algorithm applies.

The time interval between two adjacent event points is
called an epoch, named as Epoch t, t = 1, 2, ..., τ , where
τ = 2n + m − 1. Denote the length of the Epoch t as lt.
Obvious, the fading factor is constant in any epoch. Denote
time-varying fading factor as h, where element ht is the fading
factor in Epoch t.

The IoT device is assumed to be able to adaptively change
its transmission power and its corresponding transmission rate.

Following previous works [9]–[19], we assume in Epoch t, the
transmission power pt, the transmission rate rt and the fading
factor ht is related through the following function,

rt = log(1 + htpt), ∀t ∈ [1, τ]. (3)

Definition 1 (Task data transmission rate). The task data trans-
mission rate ri is vector whose element ri,t, t = 1, 2, · · · , τ is
the transmission rate for Task i in Epoch t.

Then, in Epoch t, the transmitted data amount from task
Ti is ltri,t, where i = 1, 2, · · · , n, t = 1, 2, · · · , τ . Note, it
is assumed that the data of a task can be transmitted in any
segments.

By the causality constraint, task data transmission rate must
satisfy the following equation,

τX
t=1

ltri,t =

ξ(di)�1X
t=ξ(ai)

ltri,t = bi, i : xi = 1, (4)

where function ξ(·) is used to map each event point to its
rank in this event sequence. For example, ξ(ak) is the rank
of arrival event ak in the sequence. Function ξ(·) is easy to
obtain and known before scheduling.

Then, the overall data transmission rate in Epoch t can be
calculated as

rt =
X
i:xi=1

ri,t ∀t ∈ [1, τ] (5)

By connecting the transmission rate rt to the transmission
power pt in Epoch t through Eq. (3), we present the total
energy consumption E of the IoT device as

E =
X
i:xi=0

(Ei + ei)| {z }
rece. & exec. code

+
τX
t=1

ltpt| {z }
send data

. (6)

Our goal is to minimize E. We define our offloading min-E
problem as follows.

Definition 2 (offloading min-E problem). Given a set of
tasks T and the time-varying fading factor h, the minimum
energy TC offloading problem is to determine the offloading
decision variable x and the task data transmission rate
ri, i = 1, 2, · · · , n such that the total communication energy
consumption E in Eq. (6) is minimized while constraints (1),
(2), (3), (4) and (5) are satisfied.

In this paper, we consider the offline problem, where T
and h are known in advantage before schedule. The in depth
study of the offline problem provides important insights and
may help in solving online problem. This is because, the study
of the offline problem reveals basic properties and important
essentials of the problem, which may guide the design of the
online algorithm.

III. PROBLEM DECOMPOSITION AND OFFLOADING
DECISION MAKING

It is quite challenging to solve the offloading min-E problem
directly. This is because this problem aims at minimizing the
sum energy consumption of the IoT device, which consists of

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

4

Task set generated at the TC IoT device

T1 T2 T3 T4 T5 T6 Tn…………

T T T

Loading task set (local exec.)

(load task code blocks)

…… T T T

Offloading set (remote exec.)

(offload task data)

……

t

Channel quality

T1 T2 T3

T4

deadlines

Data transmission energyCode receiving energy
Execution energy

Step 2: minimize energy (trans-
mission power scheduling problem)

Step 1: divide task set (offloading decision problem)

consume energy

Fig. 3. The two-step approach to minimize the energy consumption of
the IoT device, which includes the code receiving and execution energy,
the data transmission energy. Note, for a task, the code loading (receiving)
energy is proportional to the code block size, while the data offloading
(transmitting) energy depends on not only the data offloading task set itself,
including data size, arrival time and deadline, but also depends on the
channel quality and how many tasks to share this channel. Hence, we propose
the transmission power scheduling problem (step 2) to minimize the data
transmission considering the transmission delay constraints.

1) the code receive and 2) execution energy, and 3) the data
transmission energy. The code receive and execution energy,
i.e., the first two energy, can be directly determined once
the code loading task set is determined. However, the data
transmission energy, i.e., the third energy, is quite complicate
to minimize.

We hence propose a two-step approach to decompose the
offloading min-E problem, as illustrated in Fig. 3. The offload-
ing decision problem is studied in the first step to divide the
task set generated at the TC IoT device into code loading task
set and data offloading task set. According to previous analy-
sis [8], for any task in the loading task set, its code loading
energy by wireless receiving is proportional to the code block
size and the code execution energy can be estimated by code
analysis, so the energy consumption to load and execute tasks
is determined once the loading tasks are determined. However,
data transmission energy for the offloading task set is related to
not only the data size but also its transmission delay and the
channel quality. Then, the transmission power scheduling
problem is investigated in the second step to minimize the
transmission energy by adaptively change the transmission
power while satisfy individual task deadlines and consider
channel quality. This problem is a longstanding open question.

The two problems are highly coupled since the offloading
task set output by step 1 is the input for step 2 to minimize
the transmission energy. To decouple the two problems and
reduce the complexity, we assume there is an algorithm that
optimally solve the transmission power scheduling problem for
a given offloading task set. Let us call such algorithm HIF.
Our basic idea is to iteratively refine the offloading task set and

repeatedly invoke HIF. In such way, we make the offloading
decision for each tasks.

More specifically, our core idea to decide a specific task
to be executed remotely or locally is to estimate the energy
consumption for both options and choose the more energy
efficient one. The basic idea on estimating is to invoke the
optimal HIF algorithm twice, once include this specific task
in input offloading task set and once without it but including
it in the loading task set. This energy difference is used to
estimate the energy consumption of this specific task. Based
on this basic idea, we propose two symmetrical algorithms
to make the offloading decision from two different directions,
i.e., the break-down approach and the building-up approach.

In the break-down approach, every task is initially included
in the offloading task set and the loading task set is empty.
We invoke the HIF algorithm to compute the minimum
total energy in transmitting these data to the server. Then
we subtract each task from the offloading task set, one at
a time, and invoke again the HIF to compute new energy
consumption. The energy difference is the energy saved by not
offloading that task to the server. Then that task must execute
locally, where we can easily compute its energy consumption
on receiving code and execution it. As a result, the data
transmission energy is reduced but the code receiving energy
is increased, the IoT energy consumption can be reduced if
the decrease is greater than the increase. We compute the
improvement for every task and select these tasks with the
greatest energy improvements to switch they from offloading
to loading. After updating the offloading task set, the same
problem repeats. A formal algorithm of these steps is give in
Algorithm BREAK-DOWN.

Algorithm 1: BREAK-DOWN

1 p = 0.5 // control parameter for task
switching ratio

2 T = {T1, T2, · · · , Tn};
3 while true do
4 Initialize vector Eimprove = 0;
5 foreach Ti ∈ T do
6 Eoffload = HIF (T)−HIF (T/Ti);
7 Eload = αci + ei;
8 Eimprovei = Eoffload − Eload
9 end

10 if Eimprovei ≤ 0 for ∀i then break;
11 Let n>0 be the number of Eimprovei > 0;
12 Select top p ∗ n>0 tasks from Eimprove;
13 Update T by subtracting these tasks;
14 end
15 return T;

Algorithm BREAK-DOWN works in iteration. In each iter-
ation, a number of tasks are switched from offloading task
set to loading task set. After task sets are updated, the same
procedure repeats in the next iteration. At the begin of an
iteration, suppose the current task set is a subset of the entire
task set, i.e., T ⊆ {T1, T2, · · · , Tn}, Ti = (ai, bi, di, ci, ei).
Then Eoffload = HIF (T)−HIF (T/Ti) is the energy saved

5

in not offloading the collected data of Ti to the server. If the
task Ti execute locally at the device, then energy used to re-
ceive code blocks from the server and the execution these code
blocks are Eload = αci + ei. Hence the possible IoT device
energy improvement can be calculated as Eoffload − Eload,
note it is possible that this improvement value is negative. We
compute such improvement for every task Ti ∈ T , and store
it into an array Eimprove as in the foreach loop. In Eimprove,
only element with positive value indicts a real energy saving
improvement. Let n>0 be the number of positive elements,
and we select a portion p of the such tasks to switch from
offloading to loading, i.e., top p ∗ n>0 task from Eimprove.
The iteration stops when array Eimprove contains no positive
element, i.e., no task can be switched to make a IoT device
energy consumption improvement.

Note that, parameter p in Line 1 is the control parameter
for task switching ratio, i.e., how many task can be switched
in a single iteration. It also controls the trade-off between the
speed and accuracy of this algorithm. We will discuss such
trade-off in detail in simulations.

Another approach is the build-up approach, which initially
assume all tasks are in code loading task set and execute
locally, hence incurring the code block receiving and executing
energy. By testing every task Ti, i = 1, 2, · · · , n, we can select
the top pn>0 tasks that improve the IoT device energy con-
sumption by switching from code loading to data offloading.
After updating the offloading task set T by including these
tasks, the same problem repeats. The iteration stops when there
is no task whose switch can reduce the IoT device energy
consumption. The details of Algorithm BUILD-UP is quite
similar to the Algorithm BREAK-DOWN, we omit it for space
limitation.

IV. TRANSMISSION POWER SCHEDULING

This section studies the transmission energy consumption
minimization problem for a given set of offloaded tasks. This
problem is first formally defined and the novel notion water
level is introduced. Some basic properties for the optimal
water levels are presented; and then the optimal HIF policy is
introduced; lastly, the correctness of HIF policy is proved.

Definition 3 (transmission power scheduling problem). Given
a set of tasks T and the time-varying fading factor h,
the minimum energy problem is to determine the task data
transmission rate ri, i = 1, 2, · · · , n and the transmission
schedule for each task such that the total transmission energy
consumption is minimized.

min.
τX
t=1

ltpt

s.t. rt = log(1 + htpt), ∀t ∈ [1, τ],

τX
t=1

ltri,t =

ξ(di)�1X
t=ξ(ai)

ltri,t = bi, ∀i ∈ [1, n],

rt =

nX
i=1

ri,t ∀t ∈ [1, τ].

t

channel quality 1/h

tasks

T1 T4

a1 a2 a3 a4d1 d2 d3 d4f1 f4 f5 f6

data size b1

deadline
T2

data size b2

data size b4

f2 f3

1 2 3 4 5 6 7 8 9 10 11 12 13

deadline deadline

T3
data b3

deadline

Fig. 4. The transmission power scheduling problem. It is a longstanding open
question, which we solve optimally. Tasks are allowed to have arbitrary arrival
times, arbitrary deadlines and arbitrary data sizes. The time-varying fading
factor h is allowed to be arbitrary. The goal is to determine a transmission
power schedule such that the transmission energy consumption is minimized.
In this example, there are 4 tasks and 6 fading changes, and 13 epochs in
blue.

The transmission power scheduling problem is an open
question for many years since Uysal-Biyikoglu et al. [10],
[11] formulated a simple version of this problem more than a
decade ago. Many researchers have been working to analyti-
cally solve this problem but only partially progress has been
made [9], [12]–[16]. Fig. 4 is an example of this problem in
which there are four tasks and six fading changes.

It is not hard to find that to determine the task data trans-
mission rate ri, i = 1, 2, · · · , n, it is enough to determine the
determined the overall transmission rate rt, t = 1, 2, · · · , τ .
This is because we can always schedule the task data trans-
mission according to the earliest deadline first (EDF) policy to
fulfill the overall rate rt. In this way, the transmission rate ri
for each task can be determined. By Eq. (3), transmission rate
rt and transmission power pt uniquely determine each other,
therefore, solving the transmission power scheduling problem
is equivalent to compute the power schedule pt for each Epoch
t = 1, 2, · · · , τ .

We propose a novel notation water level related to pt as
follows.

Definition 4 (Water Level). For any given power schedule,
pi, i = 1, 2, · · · , τ , the water level wt is defined as

wt =

(
pt + 1

ht
, if pt 6= 0,

undefined, otherwise,

where ht is the fading factor.

The notation water level wt is introduced and inspired by
the analysis in Appendix A. Then, given water level wt, we
can compute pt using formula

pt = (wt −
1

ht
)+.

Obviously, the optimal power schedule popt and the optimal
water level wopt uniquely determine each other. We will

6

T1
T2

T3

T4

a1 a2 a3 a4d1 d2 d3 d4f1 f4 f5 f6f2 f3

t

1/h
waterlevel w

1/h9

p9

w9

p

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 5. An illustration of the optimal water level wopt for the example given
in Fig. 4. From this figure, we can see that wopt and popt uniquely determine
each other since h is known in advance. Note that the water level is undefined
in Epoch 5, 6, 7, 11 and 12, where transmission power is zero.

therefore focus on the optimal water level wopt. An illustration
of the optimal water level is given in Fig. 5.

In the rest of this section, we focus on solving the trans-
mission power scheduling problem by computing the optimal
water level wopt.

A. Basic properties of an optimal power policy

We first present some basic properties that any optimal water
level wopt must have.

Lemma 1 (Water level equalization). For any power schedule,
if in Epoch i and j, the water levels do not equal, assuming
wi < wj , then a shared water level w,wi < w < wj , can
be used in both epochs to improve the schedule unless the
causality constraints do not allow.

Proof. See Appendix B.

As an immediate result of Lemma 1, if there is only one task
to transmit data, then the optimal water level is constant over
epochs regardless of the fading level. This result is consistent
with the famous water-filling method [22]. When multiple
packets are in consideration, the water level changes because
of the causality constraints. The changes have the following
properties.

Lemma 2. In wopt, if two water level wopti and woptj are
adjacent, i.e., there is no water level (defined) between Epoch
i and j, and if wi < wj (wi > wj), then there must be a(n)
arrival (deadline) point in between them.

Proof. See Appendix C.

Note, two adjacently defined water levels may or may not be
in two adjacent epochs, since in some epochs, the water level
may be undefined. We explain this lemma using the example
wopt in Fig. 5. In wopt, two water levels wopt4 < wopt7 are
adjacent since no water level is defined in Epoch 5 and 6 by
this lemma, there must be an arrival point in Epoch 5 and 6;
two levels wopt9 > wopt10 , then the border of the two epochs
must be a deadline; since wopt10 > wopt13 , a deadline point must
be in between them according to this lemma.

Lemma 3. Let Tk = (ak, bk, dk, ck, ek) be any task whose
data is transmitted according to the optimal water level wopt.
Let H be the set of all epochs contained in time interval
[ak, dk), and H 0 ⊆ H be the subset of H which is not used
to transmit Ti. The following two statements are true:

1) The water level wopt used for any epoch of H − H 0

must be the same water level w.
2) The water level wopt used for any epoch of H 0 must be

higher or equal to the water level w.

Proof. See Appendix D.

We use wopt in Fig. 5 to explain this lemma. Take T3 as
an example. Its H set contains Epoch 7−9 which transmit no
other task data, so H 0 = ? . According to this lemma, water
level in H − H 0, i.e., Epoch 7 − 9, must be equal. Take T2
as another example. Its H set contains Epoch 4 − 11, while
H 0 contains Epoch 7 − 9 since they are used to transmit T3.
According to this lemma, water levels in H −H 0, i.e., Epoch
4, 10, must be equal to a value w, and water level in H 0 must
be equal to or higher then w.

B. Water Level and its Computation

With the optimal properties prepared, this subsection intro-
duces how to compute the water level. But before that, we
first introduce one related definition.

Definition 5 (Data interval [19]). Given a task set Tk =
(ak, bk, dk, ck, ek), 1 ≤ k ≤ n, the data interval I[i, j] is
defined as the time interval from the arrival time ai to the
deadline dqj , 1 ≤ i, j ≤ n, e.g. I[i, j] = [ai, dqj) when
ai ≤ dqj . I[i, j] is undefined, when ai > dqj .

Note that dq1
≤ dq2

≤ · · · ≤ dqn and sequence
q1, q2, . . . , qn is a permutation of 1, 2, . . . , n.

Our proposed HIF policy works in iteration. We define the
following four parameters for each data interval I[i, j], 1 ≤
i, j ≤ n, which will be modified in each iteration.
� The task set S[i, j] is the set of tasks whose arrival

time and deadline are both contained inside I[i, j] and
have not been assigned epochs yet. Initially S[i, j] =
{Pk|[ak, bk) ⊆ I[i, j]};

� The data load B[i, j] is the sum amount of data contained
in S[i, j], i.e., B[i, j] =

P
Tk2S[i,j] bk.

� The available epochs T [i, j] is the set of all available
epochs contained in interval I[i, j]. Initially, T [i, j] con-
tains all epochs in interval [ai, dqj].

� The water level W [i, j], as a constant
value, transmits B[i, j] data in T [i, j], e.g.,
B[i, j] =

P
t2T [i,j] lt log(htW [i, j]).

Major notations used in this paper are summarized in Table I
for the reader’s convenience.

For the example illustrated in Fig. 4 and 5, I[2, 3] =
[a2, dq3

) = [a2, d2); the task set S[2, 3] = {T2, T3}, the data
load B[2, 3] = b2 + b3; the available epochs T [2, 3] includes
Epochs 4 − 11; W [2, 3] is a shared water level for epochs
in T [2, 3] to transmit B[2, 3] data. Although the W [2, 3] is
not shown in the figure, its exact value can be computed
by the classic water-filling technique: water can be gradually

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

7

filled into interval Epochs 4− 11, and stops filling as soon as
the corresponding transmission power can support transmitting
b2 + b3 data. Such water level is W [2, 3].

Algorithm 2: INTERVALWATERLEVEL(I[i, j])

1 H=sort(h) // sort epochs such that the
channel fading factors are in
non-increasing order

2 for q ← 1 to K do
3 w = 1/Hq , B = 0;
4 for k = 1 to K do
5 if w > 1/hk then B = B + lk log(whk);
6 end
7 if B ≥ B[i, j] then break;
8 end
9 Solve B[i, j] =

Pq�1
k=1 lk log(wxhk);

10 return wx

Since computing W [i, j] is one of the most important
steps of HIF policy, we specifically design an efficient Al-
gorithm INTERVALWATERLEVEL which directly computes
W [i, j]. We assume the number of available epochs in T [i, j]
is K. We sort the K epochs in non-increasing order of the
channel factors,i.e., 1/h1 ≤ 1/h2 ≤ · · · ≤ 1/hk. As the
water is gradually filled in, the water level reaches values in
{1/hi, i = 1, 2, · · · ,K}, one by one. When the water level w
equals 1/hq , the total data transmitted with current water level
is B =

P
k<q lk log(whk). If B < B[i, j], then we must have

the water level W [i, j] > w, and otherwise, W [i, j] ≤ w. By
computing B for each 1

hq
, q = 1, 2, · · · ,K, we can determine

a q such that 1/hq ≤ W [i, j] ≤ 1/hq+1. So, by solving
B[i, j] =

Pq�1
k=1 lk log(wxhk), we can compute wx = W [i, j]

directly.

C. Highest water level Interval First (HIF) policy

To compute the optimal water level wopt, the HIF policy
works in iteration. In each iteration, the water level is com-
puted for every data interval. Amongst all the data intervals,
we locate the one with the highest water level. Let it be

TABLE I
MAJOR NOTATIONS AND THEIR EXPLANATIONS.

Notation Explanation
Tk The k-th task Tk = (ak; bk; dk; ck; ek), with arrival time

ak , data size bi, transmission deadline di, code block size
ci, execution energy ei

ht fading factor (channel quality) in Epoch t
xk xk = 0 indicates that task Tk is executed locally at the

IoT device (code loading task) and xk = 1 means that it is
executed remotely at the server (data offloading task)

I[i; j] = [ai; dqj), the time interval from the arrival time ai to the
deadline dqj

S[i; j] the set of tasks whose arrival time and deadline are both
contained inside I[i; j] and have not been assigned epochs
yet

B[i; j] the sum amount of data contained in S[i; j]
T [i; j] the set of all available epochs contained in interval I[i; j]
W [i; j] a constant value transmits B[i; j] data in T [i; j]. e.g.,

B[i; j] =
P

t2T [i;j] lt log(htW [i; j]).

I[i, j] and its water level be W [i, j]. Then, the HIF policy
transmits all packets from S[i, j] in the epochs T [i, j]. It will
be proved that any optimal water level should use W [i, j] in
data interval I[i, j], and exactly B[i, j] data from S[i, j] can
be delivered in I[i, j]. We then update the available packet
set by subtracting S[i, j] and update the available epoch set
by subtracting T [i, j]. After such update, the same problem
appears and we again locate the highest water level interval by
the same procedure. Details are presented in Algorithm HIF
(Highest Interval First).

Algorithm 3: HIF

1 while exist some tasks not yet assigned epochs do
2 foreach data interval I[i, j], 1 ≤ i, j ≤ n do
3 Identify the task set S[i, j];
4 Compute the data load B[i, j];
5 Determine the available epochs T [i, j];
6 Compute the water level W [i, j] by

Algorithm INTERVALWATERLEVEL;
7 end
8 Locate the highest water level interval I[i, j];
9 Assign water level W [i, j] to epochs in T [i, j];

10 Mark all the epochs in T [i, j] as unavailable;
11 Mark all the tasks of S[i, j] as assigned epoch;
12 end

We use the example in Fig. 5 to illustrate the execution of
Algorithm HIF. In the first while loop, after the foreach loop
computes the water level for every possible interval, I[3, 2]
is located as the highest water level interval, and task T3 is
assigned with Epoch 7, 8, 9, which use the same water level
W [3, 2]. After updates, the remain task set is {T1, T2, T4} and
the available epochs are {1−6, 10−13}. In the second while
loop, interval I[1, 3] is located as the highest water level, and
task T1 and T2 are assigned with Epoch 1− 6, 10, 11, where
the water level W [1, 3] is used in Epoch 1 − 4, 10. After
updates, the remain task set is {T4} and the available epochs
are {12, 13}. In the third while loop, interval I[4, 4] is located
as the highest water level, and task T4 is assigned with Epoch
12, 13, where the water level is defined in Epoch 13.

The correctness of the HIF policy depends on whether using
W [i, j] as the water level in data interval I[i, j] is optimal. If
this is true for the first iteration, then, by the recursive native
of HIF policy, we can conclude that it is optimal in every
iteration. The following theorem states that this is true for the
first iteration.

Theorem 1. Given a set of tasks T = {Ti|1 ≤ i ≤ n}, Ti =
(ai, bi, di, ci, ei), among all the data intervals, if the highest
water level interval is I[i, j], then the following statements
must be true:

1) Any optimal transmission policy must assign water level
W [i, j] to every epoch of I[i, j],

2) Any optimal transmission policy must transmit exactly
the packets S[i, j] in I[i, j].

Proof. See Appendix E.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

8

Average Delay Constraint d
2.5 3 3.5 4 4.5 5 5.5

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0

20

40

60

80

100

Break-Down
Build-Up
optimal

(a)

Average Channel States h
0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

50

60

70

80

90

Break-Down
Build-Up
optimal

(b)

Nubmer of Jobs n
10 20 30 40 50

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0

200

400

600

800

1000

1200

1400

baseline
Break-Down
Build-Up

(c)

Fig. 6. Evaluation of the energy consumption by our two proposed algorithm. In (a) and (b), the optimal value is computed by brute force search. In (c), a
baseline value is depicted.

All the water levels computed by the HIF policy are optimal
by the recursive native of HIF policy.

After the optimal water levels are calculated, the trans-
mission power is determined, hence the packet transmission
schedule can be uniquely determined by applying Earliest
Deadline First (EDF) rule to select packets from the data queue
to transmit.

V. SIMULATIONS

In our simulation, we investigate the performance of the
two proposed algorithms involving Break-Down, Build-Up and
HIF. Since no other existing work studies the same problem,
we compare them against the optimal results when the input
task set size is small and against a simple intuitive baseline
algorithm when the input set is large.

Since the optimal offloading task set must be one of the
subset of the entire task set. When the entire task set is
small, we can use brute force to enumerate every possible
combination subset and compute the total IoT device energy
consumption. However, when the task set size becomes larger,
the number of combinations grows exponentially, hence the
brute force method fails to compute the optimal solution
within a reasonable time. We therefore propose a baseline
method, which randomly selects nbaseline combinations from
all possible subsets, and output the best solution amongst them.

A. Simulation Settings

We assume a total of n tasks are generated whose input
data size follows an uniform distribution U(1, 50) and code
block size follows an uniform distribution U(1, 4). The code
block receiving energy consumption parameter α is set to 1.
The local execution energy of the code is assumed to follow
an uniform distribution U(0, 2). The task arrivals are assumed
to following Poisson process. The average inter-arrival time
is set to be 1. The task data transmission delay is assumed
to follow an uniform distribution U(0, 2 ∗ d), where d is the
average delay constraint. We assume the wireless channel for
transmit data from the device to the server has a dynamic
random channel quality, whose channel state (fading factor)
follows an uniform distribution U(0.05, 2 ∗ h − 0.05), where
h is the average channel fading value.

In our simulations, the default setting is the fading factor
h = 0.25, the average delay constraint d = 4 and the packet

number n = 5 for brute force method. When the task number
is small, i.e., n = 5, algorithm Break-Down and Build-Up
are compared against the brute force optimal solution, and
parameter h and d are changed one at a time to evaluate their
impact on algorithm performance. When the task number is
large, i.e., n changes from 8 to 50, the two algorithms are
compared to the baseline method to evaluate the algorithm
performance. The execution time is measured on an Apple
iMac Computer with a 4-core Intel i5 processor working at 3.2
GHz, and the system memory is 16 GB. We set nbaseline =
100 for the baseline algorithm.

Each point shown in figures of this section is the mean
value of simulation results from 50 random instances. In each
instance, a total of n packets are randomly generated according
to the above settings.

B. Simulation Results

The impact of offloading decisions are shown in Table II,
where three types of energy consumption are compared, i.e.,
when all task executed remote, all task executed locally and
when tasks are optimally selected to offload. We generate 50
random instances, and the energy consumptions for the first
six instances are presented in the first six columns, while the
average energy consumptions of all instances are presented
in the last column. We can see from Table II that in every
instance, the energy for both remote and local execution is
higher than that for selective offloading. On average, the
proposed offloading method reduces over 40.0% energy off
the traditional TC block streaming method, and reduces over
53.9% energy off the remotely executing method.

In Fig. 7, we consider the Break-Down heuristic, in which
every task is initially included in the offloading task set and
the loading task set is empty. Task-switching ratio control pa-
rameter p controls how many tasks can be switched in a single
iteration. We can see that the running time curve declines as
p grows greater, while the accuracy curve (represented by the

TABLE II
ENERGY CONSUMPTIONS COMPARISON.

index 1 2 3 4 5 6 avg.
remote ex. 172.1 234.9 119.4 137.9 183.1 87.5 175.6
local ex. 114.0 115.0 119.0 143.0 192.0 175.0 134.8

offloading 74.5 84.0 76.1 64.3 125.6 50.6 80.9

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Control ratio for task# switching (p)

0.4

0.6

0.8

1

1.2

1.4

1.6

ti
m

e
 (

s
)

80

90

100

110

120

ra
ti
o
 (

%
)

Break-Down running time (left)

Break-Down to optimal ratio (right)

Fig. 7. The tradeoff between algorithm execution time and output accuracy.
The more time sent (iteration), the more accurate the results.

Break-Down to optimal ratio in terms of energy consumption)
rises as p grows. This is because, when p is small, less tasks
are selected and switched in each iteration, resulting in more
iterations to finish the algorithm which slows down the algo-
rithm. By the HIF algorithm designed in Section IV, the less
tasks switched in one iteration, the more accurate its energy is
estimated by Line 6 of Algorithm BREAK-DOWN. When p is
large, more tasks can be switched in one single iteration, which
leads to a fewer loops before algorithm ends. However, the
energy estimate may be inaccurate since mistakes occur and
the accuracy of the algorithm drops. Therefore, in simulations,
we set p = 0.5 as default value to find a good trade-off.

In Fig. 6, the energy consumptions of our two proposed
algorithms are compared to either the optimal solution or the
baseline method.

From (a), it can be observed that under various data
transmission delay constraints, both our proposed algorithms,
i.e., the Break-Down and Build-Up, performance well. Their
curves are close to the optimal solution, indicting they are
efficient in making offloading decision and schedule energy-
efficient data transmission. Meanwhile, we notice that en-
ergy consumption decreases as the average delay constraint
increases for all three curves. This is because the longer a
delay constraint is, the less urgent the task data transmission
is, which implies that lower transmission rate can be used to
deliver it and therefore consumes less energy.

It can be conclude from (b) that both Break-Down and
Build-Up are efficient in performance under various channel
state conditions. Note that the three curves descend as the
fading factor enlarges. This is because, generally, higher fading
factor means better channel quality, so lower transmission
power and less energy consumption.

In (c), we change the task number, from 8 to 50 with step
7, to evaluate its impact on algorithm performance. Since the
brute force method no longer computes the optimal solution at
such input size, we instead use the baseline method for com-
parison. We can see that under different task numbers, both
algorithms performance better than the baseline method. And
the gap grows as the task increases, indicting our proposed
algorithms have advantage when large number of packets
are in consideration. The curves show rising trends with the
increase of packet number, since more packets means more
data to transfer, more energy needs to be consumed.

VI. RELATED WORK

As a new paradigm of modern computing, TC has been
proposed and studied in recent years. Researchers study how
to improve TC from various aspects, e.g., code execution
schemes [1]–[3], cache storage frameworks [4]–[6], and re-
source managements [20], [21]. Peng et al. [1] propose a
block-streaming APP execution scheme, which splits the codes
of a whole service into numerous functional blocks and
loads them on demand. Ren et al. [2] propose a scalable
IoT architecture that combines Edge Computing and TC, in
which service provisioning flow is from edge servers to IoT
devices, and data processing flow is in reverse direction. Zhang
et al. [3] further reduces the service delay by proactively
streaming blocks before the requests. Besides the above TC
improvement from code execution, other improvements are
from cache storage. Zhang et al. [4] design a multi-level
cache scheme to speed up the code block access. Liu et
al. [5] propose a simulation framework to evaluate a particular
cache scheme. Jin et al. [6] uses cooperative storage and D2D
data sharing to reduce the code accessing delay. Other works
focus on resource management which can be incorporated into
TC. Zhang et al. [20] investigate a new resource allocation
algorithm to manage both energy and spectrum resource.
Zhang et al. [21] study a utility-optimal resource management
and allocation algorithm for energy harvesting IoT devices.

Tremendous research efforts have been made to design
delay-constrained energy-efficient power scheduling algo-
rithms with or without the consideration of dynamic channel
states, namely, time-varying fading factors. Prabhakar, Uysal-
Biyikoglu, and El Gamal [10], [11] are among the first group
of researchers who formulated the delay-constrained energy
efficient packet transmission problem. They consider the case
where all packets have a common deadline and the arrival time
and size of each packet are known in prior to the scheduling.
An optimal scheduling algorithm is presented to guarantee to
deliver all packets before the deadline with minimum energy
consumption. Zafer and Modiano [14], [15] thus present an
optimal algorithm that allows each packet to have an individual
deadline. They propose the cumulative curves to track packet
arrivals and packet departures. The key observation is that a
feasible departure curve always lies between the arrival curve
and minimum departure curve. However, they still need to
make an undesirable assumption that a packet arriving earlier
carries an earlier deadline, which will be referred to as aligned
deadlines in this paper. Shan, Luo and Shen [19] solve the most
general case in which arbitrary deadlines are allowed. The
common deadline model and the aligned deadline model are
both special cases of this more general model. They arise the
concept of data interval and propose the Densest Interval First
(DIF) policy to control the transmission power and schedule
the transmission rate that minimize the energy consumption.

These above papers investigate over a static channel. In
the real world, a wireless communication channel is usually
a time-varying fading channel. El Gamal et al. [9], [12]
propose the MoveRight and FlowRight algorithms that solve
this problem when packets have aligned deadlines. The main
idea of the MoveRight/FlowRight algorithm is to iteratively

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

10

calculate the local optimal solution for every two adjacent
time-slots, and this iterative local optimization is proved to
lead to the globally optimum solution. However, such an
iteration based algorithm has a high computational complexity,
where hundreds of seconds may be required in actual compu-
tation [9], [12]. Moreover, it can not handle the more general
arbitrary deadline model.

From the above discuss, we can conclude that the energy
efficient power scheduling problem with arbitrary individual
deadline guarantee over a fading channel is still open.

VII. CONCLUSIONS AND FUTURE WORK

This paper has formulated the offloading min-E problem,
and decomposed it into the offloading decision problem and
the transmission power scheduling problem. Two heuristic ap-
proaches, namely Break-Down and Build-Up were presented
to make the offloading decision for the first problem. Although
the transmission power scheduling problem is a longstanding
open question, we proposed the Highest water level Interval
First (HIF) policy to optimally solved this problem after
introducing some optimality properties for it. The HIF policy
was designed based on novel notations such as date interval
and water level. Simulations have shown these proposed
algorithms are efficient through extensive simulations.

In the future, we plan to extend our work that considers
only one IoT device and one TC server to a more complex
scenario where multiple IoT devices are connected to a TC
server.

REFERENCES

[1] X. Peng, J. Ren, L. She, D. Zhang, J. Li and Y. Zhang, “BOAT: A
Block-Streaming App Execution Scheme for Lightweight IoT Devices,”
IEEE Internet-of-Things Journal, vol. 5, no. 3, pp. 1816-1829, 2018.

[2] J. Ren, H. Guo, C. Xu and Y. Zhang, “Serving at the Edge: A Scalable
IoT Architecture based on Transparent Computing,” IEEE Network, vol.
31, no. 5, pp. 96-105, 2017.

[3] D. Zhang, R. Shen, J. Ren, Y. Zhang, “Delay-optimal Proactive Service
Framework for Block-Stream as a Service,” IEEE Wireless Communi-
cations Letters, to appear, 2018, DOI: 10.1109/LWC.2018.2799935

[4] D. Zhang, Y. Zhou, Y. Zhang, “A Multi-Level Cache Framework for
Remote Resource Access in Transparent Computing,” IEEE Network,
vol. 32, no. 1, pp. 140-145, 2018.

[5] J. Liu, Y Zhou, and D. Zhang, “TranSim: A Simulation Framework
for Cache-enabled Transparent Computing Systems,” IEEE Trans. on
Compu., vol. 65, no. 10, pp. 3171-3183, Oct 2016.

[6] J. Jin, J. Luo, Y Li, and R. Xiong, “COAST: A Cooperative Storage
Framework for Mobile Transparent Computing Using Device-to-Device
Data Sharing,” IEEE Network, vol. 32, no. 1, pp. 133-139, 2018.

[7] R. Ahmad, A. Naveed, J. Rodrigues, A. Gani, S. Madani, J. Shuja,
T. Maqsood, and S. Saeed, “Enhancement and Assessment of a Code-
Analysis-Based Energy Estimation Framework,” IEEE Systems Journal,
to appear, 2018, DOI: 10.1109/JSYST.2018.2823733

[8] P. Serrano, A. Garcia-Saavedra, G. Bianchi, A. Banchs, and A. Azcorra,
“Per-Frame Energy Consumption in 802.11 Devices and Its Implication
on Modeling and Design,” IEEE Trans. on Netw., vol. 23, no. 4, pp.
1243-1256, Aug. 2015.

[9] A. El Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi,
“Energy-efficient Scheduling of Packet Transmissions over Wireless
Networks,” in Proc. IEEE INFOCOM, May 2002, pp.1773-1782.

[10] B. Prabhakar, E. Uysal Biyikoglu, and A. El Gamal, “Energy-Efficient
Transmission Over a Wireless Link via Lazy packet Scheduling,” in
Proc. IEEE INFOCOM, Apr 2001, vol. 1, pp.386-394.

[11] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Energy-Efficient
Packet Transmission Over a Wireless Link,” IEEE Trans. on Netw., vol.
10, no. 4, pp. 478-499, Aug. 2002.

[12] E. Uysal-Biyikoglu, A. El Gamal, “On adaptive transmission for energy
efficiency in wireless data networks,” IEEE Trans. Inf. Theory, vol. 50,
no. 12 pp. 3081-3094, Dec. 2004.

[13] W. Chen and U. Mitra, “Energy efficient scheduling with individual
packet delay constraints,” in Proc. IEEE INFOCOM, Apr. 2006.

[14] M. Zafer and E. Modiano, “A Calculus approach to minimum energy
transmission policies with quality of service guarantees,” in Proc. IEEE
INFOCOM, Mar. 2005, vol. 1, pp. 548-559.

[15] M. Zafer and E. Modiano, “A Calculus Approach to Energy- Efficient
Data Transmission With Quality-of-Service Constraints,” IEEE Trans.
on Netw., vol. 17, no. 3, pp. 898-911, June 2009.

[16] A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission schedul-
ing over a fading channel with energy and deadline constraints,” IEEE
Trans. Wireless Commun., vol. 5, pp. 630-641, March 2006.

[17] M. Zafer and E. Modiano, “Minimum Energy Transmission Over a
Wireless Channel With Deadline and Power Constraints,” IEEE Trans.
on Automatic Control, vol. 54, no. 12, pp. 2841-2852, Dec. 2009.

[18] M. Zafer and E. Modiano, “Delay-Constrained Energy Efficient Data
Transmission over a Wireless Fading Channel,” in Proc. Information
Theory and Applications Workshop, 2007, pp. 289-298.

[19] F. Shan, J. Luo, and X. Shen, “Optimal energy efficient packet schedul-
ing with arbitrary individual deadline guarantee,” Comput. Netw., vol.
75, no. 2014, pp. 351-366. Dec. 2014

[20] D. Zhang, Y. Qiao, L. She, R. Shen, J. Ren, Y. Zhang, “Two
Time-Scale Resource Management for Green Internet of Things
Networks,” IEEE Internet-of-Things Journal, to appear, 2018, DOI:
10.1109/JIOT.2018.2842766

[21] D. Zhang, Z. Chen, M. K. Awad, H. Zhou, N. Zhang, and X. (Sherman)
Shen, “Utility-optimal Resource Management and Allocation Algorithm
for Energy Harvesting Cognitive Radio Sensor Networks,” IEEE J. on
Sel. Areas in Commu., vol. 34, no. 12, pp. 3552-3565, Dec. 2016.

[22] D. Tse and P. Viswanath. Fundamentals of wireless communication.
Cambridge university press, 2005.

[23] Stephen Boyd, and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004

APPENDIX

A. Introduction of water level

We use a toy example to introduce the water level that
minimize the energy consumption with delay constraint. This
analysis is inspired by the well-known water-filling power al-
location method which aims to maximize the throughput [22],

Given one task T = {c, b, 0, 2} with arrival time a = 0,
deadline d = 2. Assume the fading factor is h1 in [0, 1) and
h2 in [1, 2). Hence, there are three events and two epochs.
We want to compute the optimal transmission power p1 and
p2 for the two epochs, such that the total consumed energy is
minimized.

min. p1 + p2, (7)
s.t. log(1 + h1p1) + log(1 + h2p2) = b, (8)

pi ≥ 0, i = 1, 2. (9)

By the KKT conditions for convex program [23], we associate
Lagrangian multiplier w with constraint function (8) and
multiplier µi with (9). Then we have the following Lagrangian
function [23]:

L(p, w, µ) = p1+p2−w(log(1+h1p1)+log(1+h2p2)−b)
− µ1p1 − µ2p2

By the necessary and sufficient KKT conditions, we have
µipi = 0 and ∂L

∂pi
= 0 for i = 1, 2. Thus

pi =
w

1− µi
− 1

hi
= (w − 1

hi
)+, i = 1, 2,

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

11

where the second equation is because µipi = 0 which means at
least one of µi and pi must be 0. This implies that p1+1/h1 =
p2 + 1/h2 when p1 > 0 and p2 > 0. We therefore define
pt + 1/ht as the water level.

B. Proof of Lemma 1

transmit more data consuming the same amount of energy,
or consume less energy to transmit the same amount of data,

Since wi = pi + 1
hi

and wi = pi + 1
hi

, where hi and hj
are channel fading factors, pi and pj are transmission powers,
so pi = wi − 1

hi
and pj = wj − 1

hj
. Therefore, the energy

consumption E of the two epochs is calcuated as

E = pili + pj lj

= wi1i + wj lj − li/hi − lj/hj .
(10)

The data transmission B is

B = rili + rj lj

= li log hiwi + lj log hjwj .
(11)

There are two cases to improve the schedule, i.e., consume
E while transmit more than B, or transmit B while consume
less thant E. We consider the formal case by finding a common
water level w for both epochs and show the data transmission
is increased. The other case is similar and left to the readers.

The common w can be computed as follows,

w =
wili + wj lj
li + lj

. (12)

Now, replace both wi and wj with w in two epochs. It is
easy to check that the consumed energy does not change after
replacement. But the new transmitted data B0 is changed to

B0 = li log hiw + lj log hjw.

The difference is

∆B = B −B0

= li logwi + lj logwj − (li + lj) logw

= (l1 + l2)(
l1

l1 + l2
logw1 +

l2
l1 + l2

logw2

− log(
l1

l1 + l2
w1 +

l2
l1 + l2

w2))

≤ 0.

The last inequality follows from the fact that the function log
is a concave function.

As a conclusion, the water levels of any two epochs can be
equalized to transmit more with the same amount of energy
consumption as long as the casuality constraints allow.

C. Proof of Lemma 2

We prove the first half, i.e., if wi < wj then there is an
arrival point in between, and the second half is symamtctic.

In the seek of contradiction, we assume there is no arrival
point between Epoch i and j. Then, the water levels of the two
epochs can be equalized by moving a certain amount of data
transmitted in Epoch j to Epoch i. According to Lemma 1,
such equalization improves on the original schedule. We now

show such equalization satisfies the casuality constraints. First,
every packet is finished before its deadline, because more data
is transmitted in an earlier epoch. Second, no packet will be
transmitted before its arrival time, because no packet is moved
forward accross an arrival point. This conflicts the optimality
of the policy.

D. Proof of Lemma 3

We prove (1) by contradiction. Assume, in wopt, two water
levels wopti < woptj are used in Epoch i and j which are
contained inside set H −H 0 of task Tk. Then, the two water
levels can be equalized by moving some amount of packets
from Epoch j to i, since between epochs transmits only data
from Tk. By doing this, the optimal water level wopt is
improved according to Lemma 1, which is a contradiction.
Then, we prove (2). By contradiction, we assume wopt is
lower than w in the Epoch x, where Epoch x is contained
inside in H 0. Now consider Epoch y in H − H 0, since both
x ∈ H and y ∈ H , we can always move some amount of data
transmission from Epoch y to x without violet the causlity
constraints. Since the equalization between x and y improves
wopt, contradicting its optimality, therefore (2) is true as well.

E. Proof of Theorem 1

We prove (1) by contradiction. Assume wopt is the op-
timal water level used in I[i, j] and wopt 6= W [i, j]
in some epochs inside [ai, dqj). There must be an epoch
[ek, ek+1) ⊆ [ai, dqj) where the optimal water level wopt >
W [i, j]. Because if wopt ≤ W [i, j] for entire I[i, j],
then

R
t2[ai,dqj)

log(woptt ht) dt <
R
t2[ai,dqj)

log(W [i, j]ht) dt,
which implies some packets must miss their deadlines. There-
fore, wopt > W [i, j] holds in epoch [ek, ek+1) ⊆ [ai, dqj).
We then extend this epoch [ek, ek+1) to the longest time
interval [eu, ev) where every epoch has their wopt > W [i, j].
Note, [ai, dqj) may not contain the time interval [eu, ev) or
vice versa. Thus, the water level increases/decreases at eu/ev .
Otherwise, we can extent the [eu, ev) to be a larger time
interval. Note, it is possible that water level is undefined in
[eu0 , eu) or in [ev, ev0), for some u0 < u and v0 > v.

By Lemma 2, eu is an arrival point, or an arrival point
is inside [eu0 , eu), which is assumed to be ap. Similarly, a
deadline point dqq is at ev or inside [ev, ev0). Thus, there must
exist a data interval [ap, dqq), and its water level is no higher
than W [i, j], because the I[i, j] is the highest water level
interval. However, we have wopt ≥W [i, j] for every epoch in
[eu, ev) and wopt > W [i, j] for Epoch [ek, ek+1) ⊆ [eu, ev),R
t2[ap,dqq)

log((woptt ht) dt

=
R
t2[eu,ev) logwoptt ht) dt

>
R
t2[eu,ev) log(W [i, j]ht) d

=
R
t2[ap,dqq)

log(W [i, j]ht) d t > B[p, q].
Thus, the optimal water level wopt transmits more data than
the B[p, q] in the data interval I[p, q]. We therefore conclude
that there must be a packet Px not belonging to S[i, j]
is transmitted in the data interval I[p, q]. Packet Px either
arrives before ap or has a deadline after dqq . This contradicts

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883903, IEEE Internet of
Things Journal

12

Lemma 3. Therefore, W [i, j] is the optimal water level for
every epoch in I[i, j]. The statement (1) is proved.

According to Algorithm INTERVALWATERLEVEL, the wa-
ter level W [i, j] transmits exactly B[i, j] data in I[i, j], and
all packets in S[i, j] have arrival times and deadlines inside
I[i, j]. Hence, packets in S[i, j] must be transmitted in I[i, j].

