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Abstract—Unmanned aerial vehicles (UAVs) are being widely
exploited for various applications, e.g., traverse to collect data
from ground sensors, patrol to monitor key facilities, move to aid
mobile edge computing. We summarize these UAV applications
and formulate an abstract problem, namely the general waypoint-
based PoI-visiting problem, aiming at minimizing flight energy
consumption, which is critical due to its limited onboard storage
capacity. In our problem, we pay special attention to the energy
consumption for turning and switching operations on flight
planning, which is usually ignored in the literature but plays
an important role in practical UAV flights. We propose a novel
method that uses specially designed graph parts to model the
turning and switching cost and thus transfer the problem into a
classic graph problem, i.e., traveling salesman problem, which
can be efficiently solved. Finally, we evaluate our proposed
algorithm by simulations. The results show it costs less than
107% of the optimal minimum energy consumption for small
scale problem and costs only half as much energy as a naive
algorithm for large scale problem.

Index Terms—Unmanned Aerial Vehicle, Energy Efficient,
Path Planning, Graph Theory

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly popular because they are more and more affordable.
They are being exploited widespreadly for various applica-
tions, e.g., traverse to collect data from ground sensors [1],
patrol to monitor key ground facilities [2], move to aid
ground mobile edge computing [3]. Compared with traditional
ground robots [4], which have to avoid countless obstacles or
otherwise restricted to given routes (road or rail), UAVs are
more flexible and mobile.

However, due to the limited energy storage capacity on-
board, the energy consumption of UAV directly affects its
flight endurance. Ahmed et al. [5] conclude that, for a typical
commercial UAV, the flight energy consumption accounts
for the most proportion than any other operations, such as
wireless transmission. There are three conventional flight en-
ergy consumption models in the literature: the distance-related
model [5]–[8] where the energy consumption is proportional to
the distance covered, the duration-related model [1], [9], [10]
where the energy consumption is proportional to the duration
of the flight, and the speed-related model [11]–[13] where the
energy consumption is related to the flight speed. However,
all models simplify UAV flight operations and do not reflect
energy consumption accurately.
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Fig. 1. The application scenarios and the general problem. A general problem
is formulated from various application scenarios, such as data collection,
surveillance and monitor, UAV-aided edge computing.

To reveal a more practical and accurate energy consumption
model for a UAV, we conduct a set of real-world experiments.
We disclosed that, in addition to covered distance, varying
speed and making turns at stopping points also affect energy
consumption. Our energy model hence is distinct from most
existing researches, which gives us inspiration and motivation
to study the energy-efficient UAV flight planning.

We also discover that automatic flight planning is mostly im-
plemented by waypoints, for both community-supported open-
source UAVs [14] and commercial closed-source UAVs [15].
In other words, modern rotor-wing UAVs plan their route by a
serial of waypoints, which is a location when UAVs stop and
make turns. Therefore, waypoints divide the flight route into a
serial of straight lines, where a UAV accelerates, maintains the
cruise speed, and decelerates. Because of the additional energy
consumption caused by acceleration/deceleration, fewer way-
points result in less cost. By investigating some popular UAV
applications, such as data collection, facility patrol, UAV-aided
edge computing and so on, we formulate a general waypoint-
based flight planning problem where a UAV is planned to fly
and visit a set of Points of Interests (PoIs). A UAV visits a PoI
by visiting any point within its range, where ranges of PoIs
may overlap. Even when a visiting point is within the range



of two PoIs, a UAV visits (motionlessly) PoIs at this point one
by one, with switching time between two visits. Such points
are called waypoints for UAV flight planning, and we refer to
such problem as the waypoint-based PoI-visiting problem.

Such a generalized problem matches various application
scenarios as shown in Fig. 1. (1) In the data collection scenario,
a UAV traverses all sensors to collect data and each ground
sensor has a transmission range, within which the UAV can
receive the sensed data. The transmission ranges may overlap
with each other, while in the common range, the UAV has
to switch from receiving one sensor to another. (2) In the
surveillance and monitor scenario, a UAV patrols a set of
key facilities with a camera and each facility has a visibility
range, only within which the onboard optical equipment can
sense useful data. The visibility ranges may overlap when two
facilities are close, but the UAV must switch by rotating the
camera from one facility to another. (3) In the UAV-aided edge
computing scenario, a UAV equipped with a power computa-
tion unit is dispatched to aid ground device computation and
each device has a computation offloading range, within which
the UAV can receive the offloaded computation tasks. Such
offloading ranges may overlap with each other, while the UAV
has to receive offloading tasks sequentially.

Although much work [1], [2], [16]–[18] has studied these
popular UAV applications, most of them view the ground PoI
as a single “point” rather than a range, failing to model general
problems in real-world scenarios. Moreover, some existing
researches investigated the UAV flight planning for special
application scenarios only, e.g., the algorithm proposed in [1]
is for collecting data, the algorithm in [2] is designed for
monitoring in severe environment, and the algorithm in [16] is
intended for automating CSI map construction, so it is uneasy
to extend these algorithms to other application scenarios.

This paper adopts a more practical flight energy model,
especially considering the energy consumption of turning and
switching, to study the waypoint-based PoI-visiting problem,
which is quite challenging to solve. The readers can sense
some challenges from two example paths illustrated in Fig. 1.
Compared with Path 2, Path 1 consists of fewer waypoints,
consuming less energy by the definition of waypoint. However,
Path 1 is longer than Path 2, which consumes more energy.
Besides, Path 1 costs more turning energy and switching
energy than Path 2. Because the turning angle of Path 1 is
larger than that of Path 2, and the waypoints of Path 1 are in the
common range of two PoIs. In a summary, a two-fold tradeoff
needs to be handled for any UAV flight planning algorithm.
On the one hand, there is a tradeoff between waypoints and
flight distance. The UAV usually has to detour to visit these
waypoints in common range due to the small range of the
overlap, increasing the cost of covered distance. On the other
hand, there is a tradeoff between waypoints, turning angle, and
the number of switching. Similarly, since the waypoints in the
overlap are more restricted, the route is usually winding which
implies the larger angle of turns. Meanwhile, more waypoints
in the overlap cause more frequent switching. As mentioned
above, the energy consumption of turning and switching is a

large proportion of the total.
As the challenges stated above, it is onerous to find a

straightforward solution to the waypoint-based PoI-visiting
problem. Since its partial goal is to minimize the covered
distance of a tour, it is natural to think about the classic
traveling salesman problem (TSP) and its variants, aiming to
find a minimum-cost cycle on a graph. However, one important
missing step is how to embed the turning cost (proportion to
the turn angle) and switching cost into a graph.

Therefore, the contributions of this paper are summarized
as follows.
• We devise a set of real-world experiments to develop a

more practical flight energy model for rotor-wing UAVs.
In this model, turning at a waypoint and switching
between PoIs also cost energy. This model is distinct from
most existing studies.

• We formulate a general problem that is suitable for
various UAV application scenarios, e.g., data collection,
surveillance and monitor, and UAV-aided edge comput-
ing. This problem is to design a waypoint-based flight
planning to minimize the UAV energy consumption ac-
cording to our energy model.

• We propose a novel approach that uses regular polygons
to model the turning cost and virtual split to model the
switching cost, converting the problem into a classic
graph problem, which can be solved efficiently by an
existing solution.

• We conduct simulations to evaluate the performance of
the proposed algorithm. The results show it performs near
the optimal solution, within 107% of the minimum energy
consumption for small scale problems, and costs only half
the energy by a naive algorithm for large scale problems.

The rest of the paper is organized as follows. Section II sur-
veys related work. Our motivation is presented in Section III.
And Section IV shows the system model and problem formula-
tion. Then a solution is given in Section V to the problem. The
elaborate simulations are introduced in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

A. UAV flight energy model

As stated above, there are three types of energy consumption
models commonly used for the UAV flight: the distance-
related model, the duration-related model, and the speed-
related model. Ahmed et al. [5] obtain the distance-related
model to assign energy efficient trajectories for a fleet of
UAVs. Liu et al. [6] propose a UAV distance-related model
to optimize UAV communication coverage, connectivity and
energy consumption. Xiong et al. [7] leverage distance cov-
erage model to solve UAV efficient-energy problem by a
dynamic programming approach. Huang et al. [8] propose
a general control and monitoring platform for cooperative
UAS according to the distance-related model. There are also
extensive efforts that adopt a duration-related model. Gong
et al. [1] focus on a duration-related mode and use a UAV
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(a) Flight speed and energy consumption.
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(b) Turning angle and energy consumption.
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(c) Our UAV during a flight test.

Fig. 2. A practical energy consumption model based on our real-world flight test. In (a), there is an optimal speed to minimize the energy consumption for
a fixed distance. (b) illustrates that energy consumption is a linear function about the angle of turn. (c) is a photo of our UAV during a flight test.

to collect data from a set of ground sensors with flight time
minimization. Mozaffari et al. [9] use a duration-related model
to address the problem that how to efficiently deploy multiple
UAVs to collect data from Internet of Things (IoT) devices.
Many researches indicate that the speed-related model is more
practical. Zeng et al. [19] developed a worthy speed-related
energy model to minimize the total UAV energy consumption.
Morbidi et al. [12] leverage a brushless DC motor to get the
speed-related model, determining minimum-energy paths for
UAV. While some speed-related models assumed the flight
power is proportional to either the linear [20] [21] or the
square [22] [23] of flight speed, which are both too simple.

B. UAV flight planning

Furthermore, plentiful researches provide valuable ideas
for UAV flight planning. Bouzid et al. [24] propose a flight
planning algorithm to dispatch UAVs to detect specific lo-
cations in disaster relief missions. Yang et al. [18] design a
multi-object bionic flight planning algorithm to find a well-
performed path for UAV to visit key locations. Gong et al. [1]
use UAVs for data collection over sensor networks with flight
time minimization, formulating flight planning as a dynamic
programming problem. Liu et al. [25] leverage flight planning
based on a deep learning approach for UAV to collect data
from mobile crowdsensing. Vallejo et al. [2] plan a path for
UAV by characterizing critical points in a catastrophe scenario.
To the best of our knowledge, most studies simply the real-
world scenarios, i.e., regard the visiting point as a single point,
or assume the visiting ranges never overlap.

III. MOTIVATION

To obtain a more practical and accurate UAV energy con-
sumption model, we conduct a series of real-world exper-
iments. In this section, we present the detailed experiment
settings and results. The experiment results show that varying
flight speed and making turns also affect energy cost, which
motivates the study of this paper.

In the flight tests, our equipment is a 3.8kg Model X4108
hexacopter rotor-wing UAV with a 1000mAh battery capacity.
This UAV is with autopilot Pixhawk 3.6.5, connecting to a
companion computing device, Raspberry Pi 3b single-board

computer (RPi). A current module ACS712 is installed on-
board to detect the real-time battery current, which is read
by the RPi via an I2C communication protocol. The real-
time voltage value is read by the RPi through USB via the
MAVLink communication protocol. It is easy to calculate the
real-time power consumption given the real-time current and
voltage. By MAVLink protocol, the companion RPi sends
control commands to UAV automatically via the USB link. In
our flight tests, the basic action sequence of UAV is to takeoff
first, then to accelerate to the desired speed (cruise speed)
and fly at this speed, next to decelerate to 0 for hovering or
making turns, and finally to prepare for the next round of
flight. A photo of our UAV during a flight test can be found
in Fig. 2(c).

Test 1: the relationship between flight speed and flight
energy power. In this test, we let the UAV fly straightly at
a fixed distance of 10m, 50m, 100m respectively at various
cruise speeds. We test 6 speeds for each distance, and the
relationship between UAV energy consumption E and flight
speed v is shown in Fig.2(a). An optimal speed v∗ for a certain
distance can be found to minimize the energy consumption.

Test 2: the relationship between turning angles and
flight energy consumption. In this test, we command the
UAV to make a turn at an angle of 45°, 90°, 135°, and
180° respectively. The energy consumption is illustrated in
Fig.2(b). It is easy to see that the angle θ and the UAV
energy consumption E are related nearly through function
E = 5.3316θ + 104.65 in our settings.

Hereby, we obtain a more practical and accurate UAV
flight energy model, disclosing the effect of flight speed and
turning is non-negligible. This result motivates us to redefine
UAV flight energy consumption composition, which will be
described in detail in the next section.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Assume there are n PoIs randomly located within a rectan-
gle region, denoted as PoI i, i = 1, 2, · · · , n. A PoI can be a
wireless sensor, a facility, or a mobile device. Each PoI has
a range, e.g., the transmission range of a wireless sensor, the
visibility range of a key facility, the computation offloading
range of a mobile device. The area covered by the range of
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Fig. 3. The relationships for ranges, grids and waypoints within the region.
A set of square grids is used to rasterize the region. PoIs are marked by
blue stars, of which the ranges are colored in black dashed circles, while the
candidate waypoints are marked by black dots.

PoI i is denoted as Ri, which is usually a circle and its radius
is allowed to vary for different PoIs. Note that Ri may overlap
with another range area Rj .

There is a base station within the region, and a UAV is
dispatched periodically from this station to tour and visit all
PoIs. PoI i is visited by the UAV if any point within area
Ri is visited. Without the loss of generality, assume the base
station is denoted as PoI 0. In each tour, the UAV flies at
a fixed altitude, and follows a waypoint-based route. Assume
there are m waypoint on the route, denoted as Waypoint j, j =
1, 2, · · · ,m. Obviously, at Waypoint x, the UAV can visit any
PoI i if Ri contains Waypoint x. Let Dx represent the set of
PoIs that the UAV visits at Waypoint x. If |Dx| > 1, it means
the UAV visits (motionlessly) more than one PoI at Waypoint
x. Since every PoI must be visited, we have all PoIs visiting
constraint,

| ∪x Dx| = n+ 1. (1)

We want to plan a route that consists of a serial of
waypoints, and ensure all PoIs are visited. Since a waypoint
that visits a certain PoI can be anywhere inside its range, we
divide the region by small grid to reduce the searching space
of the planning algorithm. Assume a N ×M size region is
rasterized into a g × g size grid. Thus area Ri of PoI i may
cover a set of grid centers, and let the set be denoted as Si.
Any Waypoint x is assumed to be at a grid center, so the grid
centers are called the waypoint candidates. Because at least
one waypoint is required to be within Ri, set Si is also called
the candidate waypoint set for PoI i. In this way, Waypoint x,
where PoI i is visited, i.e., i ∈ Dx, must be in the candidate
waypoint set of PoI i, i.e., x ∈ Si, so we have the range
visiting constraint,

∀i ∈ Dx ⇒ x ∈ Si ∀x. (2)

An illustration of the relationship of ranges, grids, and way-
points is in Fig. 3.

Now planning a route is simplified to choose waypoints
from all the waypoint candidates. Assume x and y are two
arbitrary waypoint candidates of the region. Let wxy indicts

whether straight direct path exy , from Waypoint x to Waypoint
y, is included in the route,

wxy =

{
1, exy is in the route,
0, otherwise. (3)

Then, when |Dx| > 0, there must be a path to and from x,
while |Dx| = 0, certainly there is no such path. We have the
following route connecting constraint,∑

∀x

wxy =
∑
∀y

wxy =

{
1, |Dx| > 0,
0, |Dx| = 0. (4)

Our goal is to plan a route such that the UAV energy
consumption is minimized.

B. Energy consumption model

We now model the energy consumption according to our
real-world experiments in the previous section.

Let x and y be two arbitrary waypoint candidates. Flying
straightly from x to y, the UAV first accelerates to the cruise
speed and then flies at this speed until it decelerates to 0 to
visit at Waypoint y.

Definition 1 (Straight flight energy consumption). The energy
consumption for a straight flight on path exy , from Waypoint
x to y, is defined as E(exy), which is related to accelera-
tion/deceleration and cruise speed.

Our proposed method can handle arbitrary energy function
E(exy). In our simulations, we set E(exy) = c1|exy| + C1,
where c1 is the energy consumption ratio proportional to the
distance, and C1 is the energy consumption related to accel-
eration/deceleration. We denote the total energy consumption
related to straight flight as EC on a tour formulated as

EC =
∑
∀x,∀y

E(exy)wxy. (5)

Let x, y and z be three arbitrary waypoint candidates that
are not on a straight line. Between straight paths, exy and eyz ,
the UAV has to make a turn at y. Denote the angle of turn as
qxyz , which is determined by the locations of x, y and z.

Definition 2 (Turning energy consumption). The energy con-
sumption for a UAV to make a turn at Waypoint y, from x to
z, is defined to be E(qxyz), where qxyz is the heading angle
changed from path exy to eyz .

Energy function E(qxyz) is the energy consumption related
to make turns by angle qxyz . Our proposed method can
handle arbitrary energy function E(qxyz). In our simulations,
we set E(qxyz) = c2qxyz + C2, where c2 and C2 are the
constant factors that related to a special UAV. The total energy
consumption for all turns is denoted as ET , which can be
calculated as

ET =
∑

∀x,∀y,∀z

E(qxyz)wxywyz. (6)

If Dx contains more than one PoI, the UAV has to switch
visiting at Waypoint x. Additional energy consumption occurs



because the UAV is required to hover to setout the switch, e.g.,
establishing connection to a mobile device or sensor, rotating
the optical camera from one direction to another, and the cost
is called switching energy consumption.

Definition 3 (Switching energy consumption). The energy
consumption for a UAV to switch between PoIs at Waypoint
x is defined to be E(Dx), which is related to the number of
PoIs in Dx.

If |Dx| = 1, there is no switch needed, we set the switching
energy to be proportional to |Dx|−1, i.e., E(Dx) = c3(|Dx|−
1), where c3 is the constant factor that related to a special UAV.
So the total energy consumption of switching between PoIs is
aggregated by all waypoints, denoted as ES , which can be
computed as

ES =
∑
∀x

E(Dx). (7)

After explicitly decomposing the total energy consumption,
we now recompose it by summing the costs of three parts
discussed above, simply marked as EALL.

EALL = EC + ET + ES . (8)

C. Problem formulation

Given the model described above, we are ready to define
this problem.

Definition 4 (P1). Given a set of PoIs and models mentioned
above, the waypoint-based PoI-visiting problem is to find a
route for UAV to minimize the total energy consumption in
Eq. (8), while the range visiting constraint Eq. (2), the all
PoIs visiting constraint Eq. (1), the route connecting constraint
Eq. (3) and Eq. (4) are satisfied.

V. THE MODEL OF TURNING AND SWITCHING ON GRAPH

Problem P1 seeks a flight route, starting from PoI 0 and
ending at PoI 0, selecting a serial of waypoints to visit each PoI
with the minimum total energy consumption in Eq. (8). This
problem seems to have deep roots in classic graph problems,
such as the generalized traveling salesman problem (GTSP).
In GTSP, there is a set of cities and some subsets of these
cities, where a salesman must visit every subset by one of its
city with the shortest tour and ultimately return to the starting
city. In other words, if we view energy cost as edge weight,
then a tour must be discovered in a complete weighted graph
to cover all subsets and the sum of weights of the tour edges
is the minimum.

However, one important missing step is how to embed the
turning cost, which is proportional to the turning angle, and
the switching cost, which is proportional to the number of
switching, into a graph. More specially, there are two most
significant difficulties with this problem: 1) the turning energy
consumption in Definition 2 is unable to be intuitively reflected
by any graph element such as the edge weight. For example
in Fig. 4(a), at Waypoint y, its turning energy consumption
is related to the turning angle, so its last waypoint, x, and

its next waypoint, z, directly affect the turning cost on the
route. Both two waypoints are not determined when the graph
is constructed, so it is arduous to represent the cost of making
turns on the graph by edge weight. And 2) the switching energy
consumption in Definition 3 can not be easily represented in
the graph model either. For example in Fig. 5(a), Waypoint x1
is in the overlap of PoI 1 and PoI 2, so the UAV can either visit
(motionlessly) the two PoIs sequentially with switching cost
at x1, or visits one PoI only without switching cost, which
can not be determined when the graph is constructed, so it
is hard to be modeled by edge weight. Therefore, how to
convert the energy consumption of straight flight, the energy
consumption of turning, and the energy consumption of PoI-
switching, into a unified form (edge weight) on the graph
model is our main task. In the following subsections, we
propose a novel approach to solve this problem ingeniously.

We start with a simple case, i.e., modeling energy cost of
straight flight by graph G1(S1,E1,W1). The vertex set S1
is defined to encompass all waypoint candidates, S1 = S1 ∪
S2 ∪ · · · ∪ Sn. The edge set E1 includes exy if Waypoint x
and y are candidates of two different PoIs. In order to model
the energy cost of straight flight on exy , we directly set the
edge weight W (exy) = E(exy). And W1 includes all weights.
Hence, graph G1(S1,E1,W1) is generated.

A. Modeling energy cost of making turns

This subsection improves graph G1 to include the energy
cost of making turns, and generates graph G2.

According to our practical energy consumption model, we
have the turning energy consumption E(θ) = c2θ+C2, where
θ is the heading angle changed, and c2 and C2 are factors
that related to a special UAV. Since energy C2 is constant
for any turn, it can be added to the weight of edges directly,
W (exy) = E(exy) + C2,∀x, y. Now we focus on modeling
the proportional energy to angles c2θ.

The core idea is that we approximate the infinitely precise
turning angle into a set of finite options, and use edge weight
to represent the energy cost of making turns. To simplify
the illustration and make is easier to calculate, we utilize
regular octagons in Fig. 4(b) to replace original waypoints in
Fig. 4(a). It is also feasible to choose other regular polygons,
like hexagon, decagon and so on. Then we evenly divide the
infinite 360° turning angle into 8 ranges to present 8 heading
directions of a UAV, where each corner corresponds to one
direction range of 45°. Hence when a UAV makes a turn,
the change of its heading direction is demonstrated by two
kinds of corners on the octagon, i.e., the arrival corner and
departure corner. In this way, the turning is proportional to the
path length between the two corners, as shown in Fig. 4(b).
Furthermore, during a straight flight path, the heading direction
of the UAV is determined by the departure corner and stays
changeless until arrives at the next octagon. For this reason, the
reachable target corners of octagons are within the direction
range of the departure corner.

Formally, we convert graph G1 = (S1,E1,W1) into
G2 = (S2,E2,W2). Any vertex (waypoint) x ∈ S1, is



(a) (b)

Fig. 4. An example of modeling energy cost of making turns. In (a), according
to our real-world experiments, making turns also costs UAV energy, which
is proportional to turning angles. This part of energy consumption is hard
to be represented in a graph. In (b), we utilize regular octagons to replace
original waypoints, evenly dividing the infinite 360° turning angle into 8
ranges to present 8 heading directions of a UAV, where each corner of ocatgon
corresponds to 45° direction range.

expanded into a regular octagon, denoted as Ox, with 8
vertices, indexed as x1, x2, · · · , x8, each representing one
45° direction. Here we let x8 = x0 for loop purpose. And
the set S2 includes all vertices of octagons. Between every
two adjacent vertices on Ox, such as xi and xj , there is a
directed edge, exixj ∈ E2, i = 1, 2, · · · , 8, whose weight is
set to W (exixj

) = 45°c2, representing the cost of a 45° turn.
For straight flight, such as from Ox to Oy , the UAV keeps
its heading direction unchange, which means the range of
departure corner xi on Ox must cover Oy , and the arrival
corner yi on Oy has the same direction index as xi. We can
ascertain the direction index of Oy with the respect to Ox,
defined as dxy . Therefore, for any edge exy ∈ E1, we create
an edge exiyi

∈ E2, where i = dxy . Note that Ox is an
infinitesimal regular octagon without physical significance, so
the weight of exiyi is equal to the that of original edge exy ,
i.e., W (exiyi) = W (exy). Let W2 covers all weights. The
pseudo code is in Algorithm ModelingTurns.

Algorithm 1: ModelingTurns(G1(S1,E1,W1))

1 for each x ∈ S1 do
2 S2 = S2 ∪ {x1, x2, · · · , x8};
3 E2 = E2 ∪ {ex1x2 , ex2x3 , · · · , ex8x1};
4 W2 = W2 ∪ {W (exixj ) = 45°c2}, ∀i 6= j;
5 end
6 for each exy ∈ E1 do
7 E2 = E2 ∪ exiyi , where i = dxy;
8 W2 = W2 ∪W (exiyj ) = W (exy);
9 end

10 return G2(S2,E2,W2)

An example is given in Fig. 4(b) to help the readers to
get a better sense on how our modeling works. There are
four waypoints x, y, z and p, thus we have four octagons
Ox, Oy, Oz and Op. First, we check path x→ y → z. Assume
the UAV starts at direction 1 of Ox, i.e., x1, since Oy is within
the direction index of x1, there is an edge ex1y1

, according
to Line 7 of Algorithm ModelingTurns. Then the UAV
moves along ex1y1 to reach y1. Next the UAV restarts at y1,

through edge ey1z1 to arrive at z1 by the same logic. Note that
there is no energy cost of turns on this straight path, and the
energy consumed on acceleration/deceleration is modeled on
the weight of two edges. Second, we check path x→ y → p,
where the UAV has to make a turn at y. Similarly, assume
the UAV starts at x1 and arrives at y1 through edge ex1y1

.
Subsequently, since Op is outside the direction index of y1, at
first the UAV chooses the octagonal edges, i.e., ey1y2 ,ey2y3 and
ey3y4 , to make three 45° turns to arrive at y4 according to the
algorithm. Then it directly reaches the target p4 through edge
ey4p4

. In this case, the energy cost of making three 45° turns
can be calculated by the three-edges weight of octagon. As a
conclusion, our modeling of turns works correctly, the larger
the angle of turning, the more sum of edge weight on the
octagon.

B. Modeling energy cost of switching PoI-visiting

In this subsection, we pay special attention to the switching
energy cost of PoI-visiting. By the problem definition, PoI
i can be visited if vertex xk ∈ S2 is included in the path,
∀x ∈ Si, k = 1, 2, · · · , 8. However, if Dx = {i, j}, there is
the switching cost at x, E(Dx) = c3(|Dx| − 1), which must
be reflected by the path.

Our core idea is that, for any vertex in the common set
of multiple PoIs, we split it into virtual vertex copies, one
for each PoI. And assign the cost of switching to the weight
of a connecting edge between any two copied vertices. This
idea is inspired by [26]. Consequently, we convert graph
G2 = (S2,E2,W2) into G3 = (S3,E3,W3). For any vertex
xi ∈ S2, set V (xi) = {k|x ∈ Sk} is all the PoIs that has xi
in its range. So any vertex xi ∈ S2 is converted to |V (xi)|
copies. And if |V (xi)| > 1, we connect every two copies
with an edge weighted c3, representing one switching cost
between involved PoIs. We present these steps formally in
Algorithm ModelingSwitch.

Algorithm 2: ModelingSwitch(G2(S2,E2,W2))

1 for each xi ∈ S2 and each p ∈ {k|x ∈ Sk} do
2 S3 = S3 ∪ {xp

i };
3 for each q ∈ {k|x ∈ Sk} and p 6= q do
4 E3 = E3 ∪ {exp

i x
q
i
};

5 W3 = W3 ∪ {W (exp
i x

q
i
) = c3};

6 end
7 end
8 for each exixi+1 ∈ E2 and p ∈ {k|x ∈ Sk} do
9 E3 = E3 ∪ {exp

i x
p
i+1
};

10 W3 = W3 ∪ {W (exp
i x

p
i+1

) = W (exixi+1)};
11 end
12 for each exiyi ∈ E2 do
13 for each p ∈ {k|x ∈ Sk} and q ∈ {k|y ∈ Sk} do
14 E3 = E3 ∪ {exp

i y
q
i
};

15 W3 = W3 ∪ {W (exp
i y

q
i
) = W (exiyi)};

16 end
17 end
18 return G3(S3,E3,W3)



PoI 1

PoI 2

(a)

PoI 1

PoI 2

(b)

Fig. 5. An example of modeling energy cost of switching PoI-visiting. In
(a), switching visiting between PoIs also costs energy, which is proportional
to the number of switching. It is hard to be represented in a graph. In (b), we
separate the overlapping ranges by splitting waypoints into virtual copies, and
assign the energy consumption of one switch to the weight of a connecting
edge between two copied vertices .

An example is given in Fig. 5 to clarify some key steps
in Algorithm ModelingSwitch. Assume Waypoint x1 lo-
cates in the overlapping range of PoI 1 and PoI 2. Algo-
rithm ModelingSwitch, first separating the overlapping
ranges by making two copied of x1, i.e., x11 and x21, and
assigning them to PoI 1 and PoI 2 one for each, as displayed
in Fig. 5(b). Then an edge is added to connect the two copied
vertex (the blue dashed line in (b)), whose weight equals to the
energy cost of one switching between the two PoIs. Moreover,
every edge with an endpoint inside the overlapping range, such
as edge ey1x1

, is replaced by two new edges (red dashed lines
in (b)), ey1x1

1
and ey1x2

1
, with the same weight as that of ey1x1

.
Hereby, the switching cost is now reflected on the graph, and
the switching cost can be easily modeled on the graph by
summing up the weights of all involved edges.

C. Redefinition of the problem by a graph model
Since the turning cost and the switching cost are modeled

by Algorithm ModelingTurns and ModelingSwitch in
the previous subsections, we can redefine P1 by the gener-
ated graph G3(S3,E3,W3). Then we define a new directed
weighted graph D(S,E,W, S′), where S′ = {S′1, S′2, · · ·S′n},
and S′i = {xik|∀x, k}, i = 1, 2, · · · , n, is vertex set for PoI
i. Note that, we have S′i ∩ S′j = ∅,∀i 6= j by Modeling-
Switch. Besides, the vertex set S = S3, the edge set E = E3,
the weight set W = W3.

Definition 5 (P2). Given a directed weighted graph D =
(S,E,W, S′), the waypoint-based PoI-visiting problem is to
find a feasible tour in D to visit each subset S′i at least once,
while the sum of weights of all chosen edges is minimum.

The set E = {< vi, vj >} includes all directed edges. The
weight of directed edge < vi, vj >∈ E is defined as cij , and
w

′

ij represents whether < vi, vj > is in the flight route,

w
′

ij =

{
1, edge < vi, vj > is in the route,
0, otherwise. (9)

D. Mathematics formulation
This subsection describes the details of solving P2. Now we

formulate P2 with the objective function and constraints:

Min
∑

vi,vj∈S,<vi,vj>∈E
cijw

′

ij (10)

(a) (b)

Fig. 6. Two practical cases of subloop in a flight route.

s.t.∑
vi∈Si,vj /∈Si

∑
<vi,vj>∈E w

′

ij ≥ 1∑
vi /∈Si,vj∈Si

∑
<vi,vj>∈E w

′

ij ≥ 1

}
for all sets Si (11)

∑
vi∈S,<vi,vj>∈E

w
′

ij −
∑

vk∈S,<vj ,vk>∈E
w

′

jk = 0,

for all vertices vj ∈ S (12)∑
i∈G

∑
vi∈Si

∑
j /∈G

∑
vj∈Sj ,<vi,vj>∈E

w
′

ij ≥ 1,

for all sets G which are subsets of the collection of set S,
2 ≤ |G| ≤ n− 2 (13)

w
′

ij ∈ {0, 1} for all < vi, vj >∈ E (14)

1) Objective function: Our goal is to find a cycle to visit
each subset at least once on the graph with the minimum
sum of weights of all visiting-edges, denoted as the objective
function in Eq. (10).

2) Constraints and transformation to GTSP: We intend to
transform the problem P2 into the GTSP, defined as

Definition 6 (GTSP). [16] Given a complete weighted graph
G = (V,E,w) on n vertices and a partition of V into m
sets PV = {V1, ..., Vm}, where Vi ∩ Vj = ∅ for all i 6= j
and Um

i=1Vi = Vj , find a cycle in G that contains exactly one
vertex from each set Vi, i ∈ 1, ...,m and has minimum length.

Three constraints are imposed to make the problem in
Definition 5 equivalent to GTSP as follows.
• Subset coverage. The UAV has to visit each PoI at least

once, which means in-edge and out-edge both necessarily
exist in each subset, so Eq. (11) unfolds this constraint.

• Tour continuity. Each waypoint of the tour has the same
in-degree as the out-degree to keep the tour continuous.
We use Eq. (12) to guarantee the continuity.

• Subloop avoidance. As shown in Fig. 6(a), the tour is
impracticable due to the possible subloops. Hence, the
constraint as Eq. (13) is crucial to avoid this case.

However, our solution is not rigorous enough. As shown in
Fig. 6(b), a tour complies the three constraints but is infeasible
(a subloop is marked in blue). To fix this little bug, we modify
the constraint in Eq. (11) as follows:∑

vi∈Si,vj /∈Si

∑
<vi,vj>∈E w

′

ij = 1∑
vi /∈Si,vj∈Si

∑
<vi,vj>∈E w

′

ij = 1

}
for all sets Si (15)
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Fig. 7. Algorithm performance comparison between OMEGA and EOA.
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Fig. 8. Algorithm performance comparison between OMEGA and NMEA.

where the UAV visits each subset once and only once.
According to the modeling of making turns, the edges are

formed only between two vertices in the same-index range.
To get closer to GTSP, we add an extra operation to make the
graph a complete one: for any two vertices without connection,
assign them an edge, whose weight is equals to the sum of
cost from one vertex to another. For example, two vertices,
e.g., vi and vj , belong to different regular octagons without
connection, so we create edge < vi, vj >, and its weight is
the sum of cost from vi to vj .

3) Large neighborhood search based algorithm usage:
Now we have converted the original problem to GTSP and
there always exists a feasible tour, then we can expediently
address our problem by referring to the Large Neighborhood
Search based algorithm [27].

VI. SIMULATION

In this section, we conduct simulations to evaluate the
performance of our flight planning algorithm, the Optimization
of Minimum-Energy by Graph Algorithm (OMEGA). We use
a brute-force method, the Enumerated Optimal Algorithm
(EOA), to search for optimal solutions. We use the running
time of EOA as a criterion to distinguish small scale problem
from large scale problem, i.e., if an optimal solution can be
computed by EOA within 500s, it is called a small scale
problem, otherwise, it is a large scale problem. For large scale
problems, the Naive Minimum-Energy Algorithm (NMEA) is
used for comparison.

A. Simulation settings
Based on our energy model of UAV flight introduced in the

previous section, we set the straight cost to 25J each meter,

the turning cost to 7.64J each degree, and the switching cost
to 1200J each time. PoI number n, region size N , grid size g,
and the number of candidate waypoint m are variables to be
assigned different values to evaluate their impacts on algorithm
performance. Then we run 50 times and take the average result
of the 50 instances.

B. Results and discussion

1) Algorithm comparison between OMEGA and EOA:
When the problem scale is small, we follow EOA to get
the optimal result by enumerating all possible paths. The
comparison between our OMEGA and EOA is shown in Fig. 7.
As shown in Fig. 7(a), for both OMEGA and EOA, the lower
the distribution density of PoIs, the more the UAV energy
consumption. Because with a fixed number of PoIs, the larger
region leads to the longer distance, indicating the UAV needs
more energy to visit PoIs. In Fig. 7(b), as the granularity
of rasterization gets coarser, i.e., enlarge the grid, the energy
consumption increasing. Enlarging the grid makes fewer can-
didate waypoints, so the route has to choose these non-optimal
waypoints, leading to greater energy consumption. In Fig. 7(c),
we can see that the number of candidate waypoints in overlap
increases while the energy cost is less. This is because more
candidate waypoints in overlap which means more optional
routes for UAVs, more likely to get one that has the minimum
energy cost. Obviously, the varying tendencies of the two
curves are similar generally in these subfigures. To be specific,
the performance of our OMEGA is close to that of EOA on
the whole, whose error is no more than 107%.

2) Algorithm comparison between OMEGA and NMEA:
When the problem scale is large, it is impossible to enumerate



all routes due to the enormous time complexity. Hence we
verify the efficiency of OMEGA by comparing it with the
NMEA where only the covered flight distance is considered.
The comparison between OMEGA and NMEA is shown in
Fig. 8. From Fig. 8(a) and 8(b), we can draw a similar
conclusion as Fig. 7(a) and 7(b) respectively: the lower the
distribution density of PoIs or the coarser the rasterization
of the region, the more energy consumption. However, as
shown in Fig. 8(c), the curve of the NMEA implies that
energy consumption is more even if we increase the number
of overlapping waypoints. The explanation of this case is that
NMEA always neglects the cost of both turning and switching,
and prefers to select the overlapping waypoints to minimize
energy cost. Whereas, from a global perspective, since the cost
of turning and switching is a non-negligible part of the total
cost, it may not be the best if flight distance is considered
merely. In short, compared with NMEA, the high efficiency
of our OMEGA is evident by saving nearly 50% of energy
consumption.

VII. CONCLUSION

In this paper, we study the waypoint-based PoI-visiting
problem for UAVs. With the investigation of previous related
work, most existing flight models simplify the UAV energy
consumption, motivating us to build a more practical and
accurate one by a set of real-world experiments. Then we
formulate a general problem with our energy model to match
more application scenarios of UAVs. To address this problem,
we propose a novel graph-based energy-efficient approach,
utilizing a well-studied classic solution of GTSP to find a tour
with the minimum cost. We conduct simulations by comparing
with the best and the naive baseline respectively, to evaluate
the performance of OMEGA. The final result shows that
OMEGA is excellent-performance within 107% of the best
which enumerates all possibilities, and nearly 50% of energy
compared to the naive which considers covered distance only.
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