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Abstract—Unmanned aerial vehicles (UAVs) are being widely
exploited for various applications, e.g., traverse to collect data
from ground sensors, patrol to monitor key facilities, move to aid
mobile edge computing. We summarize these UAV applications
and formulate an abstract problem, namely the general waypoint-
based PoI-visiting problem, aiming at minimizing flight energy
consumption, which is critical due to its limited onboard storage
capacity. In our problem, we pay special attention to the energy
consumption for turning and switching operations on flight
planning, which is usually ignored in the literature but plays
an important role in practical UAV flights. We propose a novel
method that uses specially designed graph parts to model the
turning and switching cost and thus transfer the problem into a
classic graph problem, i.e., traveling salesman problem, which
can be efficiently solved. Finally, we evaluate our proposed
algorithm by simulations. The results show it costs less than
107% of the optimal minimum energy consumption for small
scale problem and costs only half as much energy as a naive
algorithm for large scale problem.

Index Terms—Unmanned Aerial Vehicle, Energy Efficient,
Path Planning, Graph Theory

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly popular because they are more and more affordable.
They are being exploited widespreadly for various applica-
tions, e.g., traverse to collect data from ground sensors [1],
patrol to monitor key ground facilities [2], move to aid
ground mobile edge computing [3]. Compared with traditional
ground robots [4], which have to avoid countless obstacles or
otherwise restricted to given routes (road or rail), UAVs are
more flexible and mobile.

However, due to the limited energy storage capacity on-
board, the energy consumption of UAV directly affects its
flight endurance. Ahmed et al. [5] conclude that, for a typical
commercial UAV, the flight energy consumption accounts
for the most proportion than any other operations, such as
wireless transmission. There are three conventional flight en-
ergy consumption models in the literature: the distance-related
model [5]–[8] where the energy consumption is proportional to
the distance covered, the duration-related model [1], [9], [10]
where the energy consumption is proportional to the duration
of the flight, and the speed-related model [11]–[13] where the
energy consumption is related to the flight speed. However,
all models simplify UAV flight operations and do not reflect
energy consumption accurately.
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Fig. 1. The application scenarios and the general problem. A general problem
is formulated from various application scenarios, such as data collection,
surveillance and monitor, UAV-aided edge computing.

To reveal a more practical and accurate energy consumption
model for a UAV, we conduct a set of real-world experiments.
We disclosed that, in addition to covered distance, varying
speed and making turns at stopping points also affect energy
consumption. Our energy model hence is distinct from most
existing researches, which gives us inspiration and motivation
to study the energy-efficient UAV flight planning.

We also discover that automatic flight planning is mostly im-
plemented by waypoints, for both community-supported open-
source UAVs [14] and commercial closed-source UAVs [15].
In other words, modern rotor-wing UAVs plan their route by a
serial of waypoints, which is a location when UAVs stop and
make turns. Therefore, waypoints divide the flight route into a
serial of straight lines, where a UAV accelerates, maintains the
cruise speed, and decelerates. Because of the additional energy
consumption caused by acceleration/deceleration, fewer way-
points result in less cost. By investigating some popular UAV
applications, such as data collection, facility patrol, UAV-aided
edge computing and so on, we formulate a general waypoint-
based flight planning problem where a UAV is planned to fly
and visit a set of Points of Interests (PoIs). A UAV visits a PoI
by visiting any point within its range, where ranges of PoIs
may overlap. Even when a visiting point is within the range
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Fig. 5. An example of modeling energy cost of switching PoI-visiting. In
(a), switching visiting between PoIs also costs energy, which is proportional
to the number of switching. It is hard to be represented in a graph. In (b), we
separate the overlapping ranges by splitting waypoints into virtual copies, and
assign the energy consumption of one switch to the weight of a connecting
edge between two copied vertices .

An example is given in Fig. 5 to clarify some key steps
in Algorithm ModelingSwitch. Assume Waypoint x1 lo-
cates in the overlapping range of PoI 1 and PoI 2. Algo-
rithm ModelingSwitch, first separating the overlapping
ranges by making two copied of x1, i.e., x1

1 and x2
1, and

assigning them to PoI 1 and PoI 2 one for each, as displayed
in Fig. 5(b). Then an edge is added to connect the two copied
vertex (the blue dashed line in (b)), whose weight equals to the
energy cost of one switching between the two PoIs. Moreover,
every edge with an endpoint inside the overlapping range, such
as edge ey1x1

, is replaced by two new edges (red dashed lines
in (b)), ey1x1

1
and ey1x2

1
, with the same weight as that of ey1x1

.
Hereby, the switching cost is now reflected on the graph, and
the switching cost can be easily modeled on the graph by
summing up the weights of all involved edges.

C. Redefinition of the problem by a graph model
Since the turning cost and the switching cost are modeled

by Algorithm ModelingTurns and ModelingSwitch in
the previous subsections, we can redefine P1 by the gener-
ated graph G3(S3;E3;W3). Then we define a new directed
weighted graph D(S;E;W; S′), where S′ = {S′1; S′2; · · ·S′n},
and S′i = {xi

k|∀x; k}; i = 1; 2; · · · ; n, is vertex set for PoI
i. Note that, we have S′i ∩ S′j = ∅;∀i 6= j by Modeling-
Switch. Besides, the vertex set S = S3, the edge set E = E3,
the weight set W = W3.

Definition 5 (P2). Given a directed weighted graph D =
(S;E;W; S′), the waypoint-based PoI-visiting problem is to
find a feasible tour in D to visit each subset S′i at least once,
while the sum of weights of all chosen edges is minimum.

The set E = {< vi; vj >} includes all directed edges. The
weight of directed edge < vi; vj >∈ E is defined as cij , and
w

′

ij represents whether < vi; vj > is in the flight route,

w
′

ij =

�
1; edge < vi; vj > is in the route,
0; otherwise. (9)

D. Mathematics formulation
This subsection describes the details of solving P2. Now we

formulate P2 with the objective function and constraints:

Min
X

vi;vj∈S;<vi;vj>∈E
cijw

′

ij (10)

(a) (b)

Fig. 6. Two practical cases of subloop in a flight route.

s.t.P
vi∈Si;vj =∈Sj

P
<vi;vj>∈E w

′

ij ≥ 1P
vi =∈Si;vj∈Si

P
<vi;vj>∈E w

′

ij ≥ 1

)
for all sets Si (11)

X
vi∈S;<vi;vj>∈E

w
′

ij −
X

vk∈S;<vj ;vk>∈E
w

′

jk = 0;

for all vertices vj ∈ S (12)X
i∈G

X
vi∈Si

X
j =∈G

X
vj∈Sj ;<vi;vj>∈E

w
′

ij ≥ 1;

for all sets G which are subsets of the collection of set S;
2 ≤ |G| ≤ n− 2 (13)

w
′

ij ∈ {0; 1} for all < vi; vj >∈ E (14)

1) Objective function: Our goal is to find a cycle to visit
each subset at least once on the graph with the minimum
sum of weights of all visiting-edges, denoted as the objective
function in Eq. (10).

2) Constraints and transformation to GTSP: We intend to
transform the problem P2 into the GTSP, defined as

Definition 6 (GTSP). [16] Given a complete weighted graph
G = (V;E;w) on n vertices and a partition of V into m
sets PV = {V1; :::; Vm}, where Vi ∩ Vj = ∅ for all i 6= j
and Um

i=1Vi = Vj , find a cycle in G that contains exactly one
vertex from each set Vi; i ∈ 1; :::;m and has minimum length.

Three constraints are imposed to make the problem in
Definition 5 equivalent to GTSP as follows.
• Subset coverage. The UAV has to visit each PoI at least

once, which means in-edge and out-edge both necessarily
exist in each subset, so Eq. (11) unfolds this constraint.

• Tour continuity. Each waypoint of the tour has the same
in-degree as the out-degree to keep the tour continuous.
We use Eq. (12) to guarantee the continuity.

• Subloop avoidance. As shown in Fig. 6(a), the tour is
impracticable due to the possible subloops. Hence, the
constraint as Eq. (13) is crucial to avoid this case.

However, our solution is not rigorous enough. As shown in
Fig. 6(b), a tour complies the three constraints but is infeasible
(a subloop is marked in blue). To fix this little bug, we modify
the constraint in Eq. (11) as follows:P

vi∈Si;vj =∈Sj

P
<vi;vj>∈E w

′

ij = 1P
vi =∈Si;vj∈Si

P
<vi;vj>∈E w

′

ij = 1

)
for all sets Si (15)
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Fig. 7. Algorithm performance comparison between OMEGA and EOA.
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Fig. 8. Algorithm performance comparison between OMEGA and NMEA.

where the UAV visits each subset once and only once.
According to the modeling of making turns, the edges are

formed only between two vertices in the same-index range.
To get closer to GTSP, we add an extra operation to make the
graph a complete one: for any two vertices without connection,
assign them an edge, whose weight is equals to the sum of
cost from one vertex to another. For example, two vertices,
e.g., vi and vj , belong to different regular octagons without
connection, so we create edge < vi; vj >, and its weight is
the sum of cost from vi to vj .

3) Large neighborhood search based algorithm usage:
Now we have converted the original problem to GTSP and
there always exists a feasible tour, then we can expediently
address our problem by referring to the Large Neighborhood
Search based algorithm [27].

VI. SIMULATION

In this section, we conduct simulations to evaluate the
performance of our flight planning algorithm, the Optimization
of Minimum-Energy by Graph Algorithm (OMEGA). We use
a brute-force method, the Enumerated Optimal Algorithm
(EOA), to search for optimal solutions. We use the running
time of EOA as a criterion to distinguish small scale problem
from large scale problem, i.e., if an optimal solution can be
computed by EOA within 500s, it is called a small scale
problem, otherwise, it is a large scale problem. For large scale
problems, the Naive Minimum-Energy Algorithm (NMEA) is
used for comparison.

A. Simulation settings
Based on our energy model of UAV flight introduced in the

previous section, we set the straight cost to 25J each meter,

the turning cost to 7:64J each degree, and the switching cost
to 1200J each time. PoI number n, region size N , grid size g,
and the number of candidate waypoint m are variables to be
assigned different values to evaluate their impacts on algorithm
performance. Then we run 50 times and take the average result
of the 50 instances.

B. Results and discussion

1) Algorithm comparison between OMEGA and EOA:
When the problem scale is small, we follow EOA to get
the optimal result by enumerating all possible paths. The
comparison between our OMEGA and EOA is shown in Fig. 7.
As shown in Fig. 7(a), for both OMEGA and EOA, the lower
the distribution density of PoIs, the more the UAV energy
consumption. Because with a fixed number of PoIs, the larger
region leads to the longer distance, indicating the UAV needs
more energy to visit PoIs. In Fig. 7(b), as the granularity
of rasterization gets coarser, i.e., enlarge the grid, the energy
consumption increasing. Enlarging the grid makes fewer can-
didate waypoints, so the route has to choose these non-optimal
waypoints, leading to greater energy consumption. In Fig. 7(c),
we can see that the number of candidate waypoints in overlap
increases while the energy cost is less. This is because more
candidate waypoints in overlap which means more optional
routes for UAVs, more likely to get one that has the minimum
energy cost. Obviously, the varying tendencies of the two
curves are similar generally in these subfigures. To be specific,
the performance of our OMEGA is close to that of EOA on
the whole, whose error is no more than 107%.

2) Algorithm comparison between OMEGA and NMEA:
When the problem scale is large, it is impossible to enumerate



all routes due to the enormous time complexity. Hence we
verify the efficiency of OMEGA by comparing it with the
NMEA where only the covered flight distance is considered.
The comparison between OMEGA and NMEA is shown in
Fig. 8. From Fig. 8(a) and 8(b), we can draw a similar
conclusion as Fig. 7(a) and 7(b) respectively: the lower the
distribution density of PoIs or the coarser the rasterization
of the region, the more energy consumption. However, as
shown in Fig. 8(c), the curve of the NMEA implies that
energy consumption is more even if we increase the number
of overlapping waypoints. The explanation of this case is that
NMEA always neglects the cost of both turning and switching,
and prefers to select the overlapping waypoints to minimize
energy cost. Whereas, from a global perspective, since the cost
of turning and switching is a non-negligible part of the total
cost, it may not be the best if flight distance is considered
merely. In short, compared with NMEA, the high efficiency
of our OMEGA is evident by saving nearly 50% of energy
consumption.

VII. CONCLUSION

In this paper, we study the waypoint-based PoI-visiting
problem for UAVs. With the investigation of previous related
work, most existing flight models simplify the UAV energy
consumption, motivating us to build a more practical and
accurate one by a set of real-world experiments. Then we
formulate a general problem with our energy model to match
more application scenarios of UAVs. To address this problem,
we propose a novel graph-based energy-efficient approach,
utilizing a well-studied classic solution of GTSP to find a tour
with the minimum cost. We conduct simulations by comparing
with the best and the naive baseline respectively, to evaluate
the performance of OMEGA. The final result shows that
OMEGA is excellent-performance within 107% of the best
which enumerates all possibilities, and nearly 50% of energy
compared to the naive which considers covered distance only.
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